
Tripal 4.x Documentation
Release 4.x.alpha.1

Tripal Project Management Committee with the help of the Tripal Community

Apr 12, 2024

CONTENTS:

1 Install Tripal 3
1.1 Requirements . 3
1.2 Traditional Installation . 4
1.3 Tripal Docker . 13

2 Building your Site 17
2.1 Anatomy of a Tripal Site . 17
2.2 Creating Content Types . 19
2.3 Example Genomic Site Setup . 20

3 Guiding your Users 47

4 Site Administration 49
4.1 File Management . 49
4.2 Publishing . 53
4.3 Tripal Jobs . 53
4.4 User Permissions . 54
4.5 Database Backups . 64

5 Extending Tripal 67
5.1 Object-Oriented Development . 67
5.2 Controlled Vocabularies (CVs) . 67
5.3 Biological Data Storage . 69
5.4 Custom Module Development . 90
5.5 Automated Testing . 115
5.6 Hands-On Training . 123

6 Upgrading Tripal 129
6.1 Upgrading a Tripal 3 site . 129
6.2 Upgrading an Extension Module . 129

7 Contributing to Core Tripal 135
7.1 Guidelines for Contribution to Tripal . 135
7.2 Code of Conduct . 137
7.3 Shared Repository Management . 139
7.4 Creating a Docker for Testing . 143

8 Design Documentation 147
8.1 Design Overview . 147
8.2 Module + File Structure . 148
8.3 Controlled Vocabulary Design . 148

i

8.4 Design and Coding Standards . 151
8.5 Design In Progress . 153

ii

Tripal 4.x Documentation, Release 4.x.alpha.1

This documentation is meant to guide users, admin and developers in the usage and customization of Tripal 4.

CONTENTS: 1

Tripal 4.x Documentation, Release 4.x.alpha.1

2 CONTENTS:

CHAPTER

ONE

INSTALL TRIPAL

The recommended method to get involved in Tripal 4 development is through a Tripal Docker installation. This most
closely mimics the environment automated tests are run on.

1.1 Requirements

• Drupal (see supported versions below)

• Drupal core modules: Search, Path, Views, and Field.

• PostgreSQL 12+

• PHP 8 (tested with 8.1, 8.2, 8.3)

• Apache 2+

• Composer 2+

• UNIX/Linux

Note: Apache 2+ is recommended as the webserver but Drupal is also known to work well with Nginx. You may have
limited support for Nginx from the Tripal community.

PostgreSQL is required by Chado to function properly, rather than MySQL or any other database management system.

1.1.1 Supported Drupal Versions

The following table shows the current status of automated testing on the versions of Drupal we currently support.

Drupal 10.0.x 10.1.x 10.2.x
PHP 8.1
PHP 8.2
PHP 8.3

3

https://github.com/tripal/tripal/actions/workflows/MAIN-phpunit-php8.1_D10_0x.yml
https://github.com/tripal/tripal/actions/workflows/MAIN-phpunit-php8.1_D10_1x.yml
https://github.com/tripal/tripal/actions/workflows/MAIN-phpunit-php8.1_D10_2x.yml
https://github.com/tripal/tripal/actions/workflows/MAIN-phpunit-php8.2_D10_0x.yml
https://github.com/tripal/tripal/actions/workflows/MAIN-phpunit-php8.2_D10_1x.yml
https://github.com/tripal/tripal/actions/workflows/MAIN-phpunit-php8.2_D10_2x.yml
https://github.com/tripal/tripal/actions/workflows/MAIN-phpunit-php8.3_D10_2x.yml

Tripal 4.x Documentation, Release 4.x.alpha.1

1.2 Traditional Installation

These instructions assume that your webserver’s root directory is /var/www and that your site will be installed into a
directory called tripal4. Please change these in the commands below if your configuration is different.

They also assume that your system meets all the prerequisites for running a Drupal site. Refer to the Requirements
page for more information.

1.2.1 Install Prerequisites

1. If you are starting from a clean operating system installation, you will first need to install some needed programs.
First make sure the operating system is up to date.

sudo apt-get update
sudo apt-get dist-upgrade

And restart if requested.

2. Install PHP

sudo apt-get install php-dom php-gd php-curl php-cli
php --version

3. Install Apache2 web server. Note the PHP version from step 2 above, and adjust the version of PHP here if
necessary.

sudo apt-get install apache2 libapache2-mod-php
sudo a2enmod rewrite php8.1
sudo systemctl restart apache2

At this point, you should be able to open a browser on your installation system and view the Apache2 Default
Page at http://localhost

4. Install Composer

sudo apt-get install composer

5. Install PostgreSQL database engine

sudo apt-get install postgresql php-pgsql
sudo su - postgres
createuser -P drupal

and supply a password. Now, while we are still the postgres user, give the drupal user the permissions it will
need

4 Chapter 1. Install Tripal

requirements.html
requirements.html
http://localhost

Tripal 4.x Documentation, Release 4.x.alpha.1

psql
alter role drupal with login replication createdb;
ALTER DATABASE "template1" SET bytea_output = 'escape';
\q
exit

1.2.2 Install Drupal

1. Install Drupal using Composer. Composer is now the recommended way to install and manage Drupal, exten-
sion modules, and other dependencies. Detailed information can be found on Drupal’s documentation: Using
composer to install Drupal and manage dependencies.

A. Navigate to your webserver’s root directory and prepare a directory. You may not have permission
to create the directory here, so set it up first using sudo

cd /var/www
sudo mkdir tripal4
sudo chown $USER:$USER tripal4

B. Run the composer command to install a fresh copy of Drupal 10 into the tripal4 directory:

composer create-project drupal/recommended-project /var/www/tripal4

(If you are presented with this question, you can respond with a y: Do you want to remove
the existing VCS (.git, .svn..) history? [Y,n]?)

This should leave you with a tripal4 directory that looks something like this:

tripal4
composer.json
composer.lock
vendor
web

The vendor directory is where many of the dependencies like drush (see below) are in-
stalled.

The web directory is the actual webroot for Drupal. This should be the directory that is
served by your webserver. The two composer files and the vendor directory should not
be publicly accessible.

2. Install Drush and other required modules, also with composer, ensuring that you are within your new tripal4
directory:

cd /var/www/tripal4/
composer require drush/drush drupal/field_group drupal/field_group_table

3. Drupal may complain about permissions on certain files, as well as generating a configuration file from the
template provided by Drupal. The files in question must be readable and writable by the webserver’s user, as
well as yourself. If you’re using Apache, this is typically www-data and for Nginx, it is commonly nginx. Read
more about Drupal’s requirements here: Administering a Drupal site - security in Drupal, or run the following
commands to satisfy them:

1.2. Traditional Installation 5

https://www.drupal.org/docs/develop/using-composer/using-composer-to-install-drupal-and-manage-dependencies
https://www.drupal.org/docs/develop/using-composer/using-composer-to-install-drupal-and-manage-dependencies
https://www.drupal.org/docs/administering-a-drupal-site/security-in-drupal/securing-file-permissions-and-ownership

Tripal 4.x Documentation, Release 4.x.alpha.1

Make sure you are in the web root:
cd /var/www/tripal4/web

Create the files directory:
mkdir sites/default/files

Copy Drupal's configuration template:
cp sites/default/default.settings.php sites/default/settings.php

Set permissions, assuming www-data is your web user (Apache). If
necessary, you can determine the Apache username as follows:
apachectl -S | grep User
example output is User: name="www-data" id=33 not_used

Using the user name `www-data` or whatever it may be, change ownership as␣
→˓follows:
sudo chown www-data:$USER sites/default/files
sudo chown www-data:$USER sites/default/settings.php

4. Configure Apache to allow access to our install location /var/www/tripal4 so that it will show up as http:/
/localhost:/tripal4. Use your preferred editor and, with sudo, edit /etc/apache2/sites-available/
000-default.conf and make the following additions somewhere inside the <VirtualHost *:80> section.

Alias /tripal4 "/var/www/tripal4/web"

<Directory /var/www/tripal4/web>
AllowOverride All

</Directory>

After saving these changes, restart Apache

sudo systemctl restart apache2

5. Navigate to your new site in your browser: <siteaddress.com>/tripal4/core/install.php and follow
the instructions for setting up a Drupal site. The first page you should appear similar to this:

6 Chapter 1. Install Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

Select your preferred language and continue.

6. For the installation profile select Standard, and continue.

7. If all requirements are met, step 3 should be skipped automatically.

8. In step 4, you will be asked to provide credentials for a database user. Postgres is required for Chado,
and therefore it is strongly recommended to use a Postgres database for Tripal.

Detailed information on creating a Postgres database and user account can be found here: Getting started
- installing Drupal. For the Database name you can use whatever you like. For example sitedb. The
Database username drupal and Database password must be the same as the ones you provided earlier
in prerequisite step #5.

1.2. Traditional Installation 7

https://www.drupal.org/docs/getting-started/installing-drupal/create-a-database#create-a-database-using-postgresql
https://www.drupal.org/docs/getting-started/installing-drupal/create-a-database#create-a-database-using-postgresql

Tripal 4.x Documentation, Release 4.x.alpha.1

9. For step 5, installation of Drupal should begin, with progress shown similar to this.

10. For step 6, you will need to configure your site. An example is presented below, enter appropriate information
for your site.

8 Chapter 1. Install Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

1.2. Traditional Installation 9

Tripal 4.x Documentation, Release 4.x.alpha.1

12. You should then see a screen similar to this.

1.2.3 Install Tripal

1. We need to first add the Tripal module. There are two options, depending on how you will use your site. If you
are installing a production site, or are just trying out Tripal, use method “A”. If you are a developer you should
use method “B”.

A. Production or testing installation. To just use the most recent stable version of tripal install
this way:

cd /var/www/tripal4/
composer require tripal/tripal

To install the most recent development version:

cd /var/www/tripal4/
composer require tripal/tripal:4.x-dev

To install a specific released version, find the tag in the Tripal release page, and install it like
this:

cd /var/www/tripal4/
composer require tripal/tripal:4.0-alpha2

B. Developer installation. Clone the Tripal repository in your web/modules directory.

Note: Within the modules directory, you may create your own custom directory to store
other extension modules.

cd /var/www/tripal4/web/modules/
git clone https://github.com/tripal/tripal.git
or if you have a GitHub account configured
git clone git@github.com:tripal/tripal.git

2. Enable Tripal in your site using the Administration Toolbar: Manage > Extend

10 Chapter 1. Install Tripal

https://github.com/tripal/tripal/releases

Tripal 4.x Documentation, Release 4.x.alpha.1

Select “Continue” to also install “Field Group” and Field Group Table”

If successful you will see:

3. Use Drush to rebuild the cache so that Tripal menu items appear correctly.

/var/www/tripal4/vendor/bin/drush cache-rebuild

1.2. Traditional Installation 11

Tripal 4.x Documentation, Release 4.x.alpha.1

1.2.4 Install and Prepare Chado

The site is not quite ready to use yet! The Chado schema must be installed and the site must be prepared to use the
installation.

1. On your site, navigate to Tripal → Data Storage → Chado → Install Chado
The page should warn you that Chado is not installed. Use this form to install it. If you wish, you can
provide a custom name to your Chado schema:

2. Click “Install Chado 1.3”. You will be prompted to use Drush to trigger the installation of Chado. This must be
done on the command line:

/var/www/tripal4/vendor/bin/drush trp-run-jobs --username=drupaladmin --
→˓root=/var/www/tripal4/web

3. Once Chado is installed, the site must be further prepared. Navigate to Tripal → Data Storage → Chado →
Prepare Chado

12 Chapter 1. Install Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

4. Click “Prepare this site”, and like before, run the supplied Drush command:

/var/www/tripal4/vendor/bin/drush trp-run-jobs --username=drupaladmin --
→˓root=/var/www/tripal4/web

Congratulations, you now have a freshly installed Tripal 4 site with Chado as the storage back end. The next step is
Building your Site

1.3 Tripal Docker

Tripal Docker is currently focused on Development, Debugging, and Unit Testing. There will be a production focused
Tripal Docker soon.

1.3.1 Software Stack

Currently we have the following installed:
• Debian Bullseye(11)

• PHP 8.2.17 with extensions needed for Drupal (Memory limit 1028M)

• Apache 2.4.56

• PostgreSQL 16.2 (Debian 16.2-1.pgdg110+2)

• Composer 2.7.2

• Drush 12.5.1.0

• Drupal 10.2.5-dev downloaded using composer (or as specified by drupalversion argument).

• Xdebug 3.2.1

1.3.2 Quickstart

1. Run the image in the background mapping its web server to your port 9000.

a) Stand-alone container for testing or demonstration.

docker run --publish=9000:80 --name=t4 -tid tripalproject/
→˓tripaldocker:latest

b) Development container with current directory mounted within the container for easy edits.
Change my_module with the name of yours.

docker run --publish=9000:80 --name=t4 -tid --volume=$(pwd):/var/www/drupal/
→˓web/modules/contrib/my_module tripalproject/tripaldocker:latest

2. Start the PostgreSQL database.

docker exec t4 service postgresql start

1.3. Tripal Docker 13

Tripal 4.x Documentation, Release 4.x.alpha.1

Development Site Information:

URL http://localhost:9000
Administrative User drupaladmin
Administrative Password some_admin_password

1.3.3 Usage

• Run Drupal Core PHP Unit Tests:

docker exec --workdir=/var/www/drupal/web/modules/contrib/tripal t4 phpunit

• Open PSQL to query the database on the command line. The password is docker.

docker exec -it t4 psql --user docker sitedb

• Run Drush to generate code for your module!

docker exec t4 drush generate module

• Run Drush to rebuild the cache

docker exec t4 drush cr

• Get version information:

docker exec t4 drush status
docker exec t4 php -v
docker exec t4 psql --version
docker exec t4 apache2 -v

• Run Composer to upgrade Drupal

docker exec t4 composer up

1.3.4 Detailed Setup for Core Development

If you want to contribute to Tripal development, you will likely want to create a branch to work on and create a Docker
using this branch, or on another contributor’s branch. For instructions on how to do this, see the section Creating a
Docker for Testing

1.3.5 Troubleshooting

The provided host name is not valid for this server.

On my web browser, I got the message “The provided host name is not valid for this server”.

Solution: It is most likely because you tried to access the site through a URL different from localhost or 127.0.0.1.
For instance, if you run docker on a server and want to access your d8t4 site through that server name, you will have
to edit the settings.php file inside the docker (at the time writing this, it would be every time you (re)start the docker)

14 Chapter 1. Install Tripal

http://localhost:9000

Tripal 4.x Documentation, Release 4.x.alpha.1

and change the last line containing the parameter $settings[trusted_host_patterns]. This file by default is
read-only, so you will first need to change permissions to allow editing:

docker exec -it t4 chmod +w /var/www/drupal/web/sites/default/settings.php
docker exec -it t4 vi /var/www/drupal/web/sites/default/settings.php

For instance, if your server name is www.yourservername.org:

$settings[trusted_host_patterns] = ['^localhost$', '^127\.0\.0\.1$', '^www\.
→˓yourservername\.org$',];

Not seeing recent functionality or fixes.

As Tripal 4 is currently under rapid development, this could be due to not using the most up to date docker image
available. The following instructions can be used to confirm you are using the most recent image.

docker rm --force t4
docker rmi tripalproject/tripaldocker:latest
docker pull tripalproject/tripaldocker:latest

At this point, you can follow up with the appropriate docker run command. If your run command mounts the current
directory through the --volume parameter then make sure you are in a copy of the t4 repository on the main branch
with the most recent changes pulled.

1.3.6 Debugging

Xdebug: Overview

There is an optional Xdebug configuration available for use in debugging Tripal 4. It is disabled by default. Currently,
the Docker ships with three modes available:

Develop
Adds developer aids to provide “better error messages and obtain more information from PHP’s built-in func-
tions”.

Debug
Adds the ability to interactively walk through the code.

Profile
Adds the ability to “find bottlenecks in your script and visualize those with an external tool”.

To enable Xdebug, issue the following command:

docker exec --workdir=/var/www/drupal/web/modules/contrib/tripal t4 xdebug_toggle.sh

This will toggle the Xdebug configuration file and restart Apache. You should use this command to disable Xdebug if
it is enabled prior to running PHPUnit Tests as it seriously impacts test run duration (approximately 8 times longer).

There is an Xdebug extension available for most modern browsers that will let you dynamically trigger different debug-
ging modes. For instance, profiling should only be used when you want to generate profiling data, as this can be quite
compute intensive and may generate large files for a single page load. The extension places an interactive Xdebug icon
in the URL bar where you can select which mode you’d like to trigger.

1.3. Tripal Docker 15

https://xdebug.org/docs/develop
https://xdebug.org/docs/step_debug
https://xdebug.org/docs/profiler

Tripal 4.x Documentation, Release 4.x.alpha.1

Xdebug: Step debugging

Step debugging occurs in your IDE, such as Netbeans, PhpStorm, or Visual Studio Code. There will typically already
be a debugging functionality built-in to these IDEs, or they can be installed with an extension. Visual Studio Code,
for example, has a suitable debugging suite by default. This documentation will cover Visual Studio Code, but the
configuration options should be similar in other IDEs.

The debugging functionality can be found in VS Code on the sidebar, the icon looks like a bug and a triangle. A new
configuration should be made using PHP. The following options can be used for basic interaction with Xdebug: .. code:

{
"version": "0.2.0",
"configurations": [

{
"name": "Listen for Xdebug",
"type": "php",
"request": "launch",
"port": 9003,
"pathMappings": { "/var/www/drupal/web/modules/contrib/tripal": "~/Dockers/t4"␣

→˓}
}

]
}

The important parameter here is pathMappings which will allow Xdebug and your IDE know which paths on the host
and in the Docker VM coorespond to eachother. The first path listed is the one within the Docker and should point to
the Tripal directory. The seocnd path is the one on your local host machine where you installed the repo and built the
Docker image. If you followed the instructions above, this should be in your user folder under ~/Dockers/t4.

9003 is the default port and should only be changed if 9003 is already in use on your host system.

With this configuration saved, the Play button can be pressed to enable this configuration and have your IDE listen for
incoming connections from the Xdebug PHP extension.

More info can be found for VS Code’s step debugging facility in VS Code’s documentation.

Xdebug: Profiling

Profiling the code execution can be useful to detect if certain functions are acting as bottlenecks or if functions are
being called too many times, such as in an unintended loop. The default configuration, when profiling is enabled by
selecting it in the Xdebug browser extension, will generate output files in the specified directory.

To view these files, we recommend using Webgrind. It can be launched as a separate Docker image using the following
command:

docker run --rm -v ~/Dockers/t4/tripaldocker/xdebug_output:/tmp -v ~/Dockers/t4:/host -p␣
→˓8081:80 jokkedk/webgrind:latest

You may need to adjust the paths given in the command above, similar to when setting up the pathMappings for step
debugging earlier.

16 Chapter 1. Install Tripal

https://code.visualstudio.com/docs/editor/debugging

CHAPTER

TWO

BUILDING YOUR SITE

2.1 Anatomy of a Tripal Site

2.1.1 Content Types

Tripal sites host data such as organisms, analyses, genes and mRNA, and publications. In Tripal, these are known as
Content Types. Tripal comes with a number of content types out-of-the-box, but also provides the ability to create
custom content types. These content types extend the standard Drupal content types such as Article and Basic Page.

In Tripal, all content types are defined by Controlled Vocabulary (CV) terms. This has a number of advantages:

1. Facilitates sharing between Tripal sites.

2. Provides a clear indication of what content is available on your site.

3. Makes content creation more intuitive from Tripal v2 (add a “Gene” rather then a “feature”).

4. Allows complete customization of what data types your site provides.

5. Integrates tightly with web services allowing Tripal to adhere to RDF specifications

Examples

This is a working list of content types that are currently built-in to Tripal. Some of them are not enabled by default but
come in bundled modules.

• General
– Analysis

– Contact

– Organism

– Project

– Protocol

– Publication

– Study

• Expression
– Array Design

– Assay

– Biological Sample

17

https://en.wikipedia.org/wiki/Controlled_vocabulary

Tripal 4.x Documentation, Release 4.x.alpha.1

• Germplasm
– Breeding Cross

– Germplasm Accession

– Germplasm Vareity

– Recombinant Inbred Line

• Genomic
– DNA Library

– Gene

– Genome Annotation

– Genome Assembly

– Genome Project

– mRNA

– Phylogenetic Tree

– Physical Map

• Genetic
– Genetic Map

– Genetic Marker

– Heritable Phenotypic Marker

– QTL

– Sequence Variant

2.1.2 Fields

Each content type is composed of a number of datapoints, in Tripal these are Fields. By default, Tripal uses the Chado
database schema to store data, and each field is linked to a specific table and column in Chado.

For example, the Organism content type comes by default with the following fields, and each one represents a property
from Chado’s definition of an organism:

Field Name Chado “organism” table column
Abbreviation abreviation
Common Name common_name
Description comment
Genus genus
Infraspecies infraspecific_name
Infraspecific Type infraspecific_name
Species species

Just like with Content Types, each field must also have its own Controlled Vocabulary term associated to it. If we look
at the Organism example again, we have the following terms that are drawn from ontologies and their identifier:

18 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

Field Name Chado “organism” table column PUMPKIN
Abbreviation abreviation local:abbreviation
Common Name common_name NCBITaxon:common_name
Description comment schema:description
Genus genus TAXRANK:0000005
Infraspecies infraspecific_name TAXRANK:0000045
Infraspecific Type infraspecific_type local:infraspecific_type
Species species TAXRANK:0000006

2.2 Creating Content Types

Note: Prior to creating a new content type you should understand the structure of Chado and how others use Chado
to store similar types of data.

As mentioned in the Anatomy of a Tripal Site, all content types are defined by Controlled Vocabulary (CV) terms.

2.2.1 Find a Controlled Vocabulary (CV) Term

Before creating a new content type for your site you must identify a CV term that best matches the content type you
would like to create. CVs are plentiful and at times selection of the correct term from the right vocabulary can be
challenging. If there is any doubt about what term to use, then it is best practice to reach out to others to confirm your
selection. The Tripal User community is a great place to do this by posting a description of your content type and your
proposed term on the Tripal Issue Queue. Confirming your term with others will also encourage re-use across Tripal
sites and improve data exchange capabilities.

The EBI’s Ontology Lookup Service is a great place to locate terms from public vocabularies. At this site you can
search for terms for your content type. If you can not find an appropriate term in a public vocabulary or via discussion
with others then you create a new local term within the local vocabulary that comes with Tripal.

Warning: Creation of local terms is discouraged but sometimes necessary. When creating local terms, be careful
in your description.

2.2.2 How to Add a CV Term

Loading From an OBO File

Once you’ve chosen a term to describe your content type, you may need to add the term to Tripal if it is not already
present. Many CVs use the OBO file format to define their terms. If the term belongs to a controlled vocabulary with
a file in OBO format then you can load all the terms of the vocabulary using Tripal’s OBO Loader at Tripal → Data
Loaders → Chado Vocabularies → Chado OBO Loader.

2.2. Creating Content Types 19

http://purl.obolibrary.org/obo/ncbitaxon#common_name
https://schema.org/description
http://purl.obolibrary.org/obo/TAXRANK_0000005
http://purl.obolibrary.org/obo/TAXRANK_0000045
http://purl.obolibrary.org/obo/TAXRANK_0000006
https://en.wikipedia.org/wiki/Controlled_vocabulary
https://github.com/tripal/tripal/issues
http://www.ebi.ac.uk/ols/index
https://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html

Tripal 4.x Documentation, Release 4.x.alpha.1

Manually Adding a Term

Alternatively, you can add terms one at a time. To add a single term either from an existing vocabulary or a new local
term, navigate to Tripal → Data Loaders → Chado Vocabularies → Manage Chado CVs and search to see if the
vocabulary already exists. If it does you do not need to add the vocabulary. If it does not exist, click the Add Vocabulary
link to add the vocabulary for your term. Then navigate to Tripal→Data Loaders→Chado Vocabularies→Manage
Chado CV Terms then click the Add Term link to add the term.

2.3 Example Genomic Site Setup

The following tutorial will walk you through creating content and loading genomic data. This is a good introduction to
Tripal 4 Content Types and the new Administrative User Interface regardless of whether you intend to store genomic
data in your particular Tripal 4 site.

2.3.1 Setup Tripal Content Types

When you first install Tripal, you do not yet have any content types created. This is to provide you with flexibility to
only add the content types you need for your data.

For a site containing genome assemblies, genes and associated content, you will want to import the Genomic content
type collections. This is done by navigating to Admin > Tripal > Page Structure and then clicking “Import type
collection” button. You want to select Genomic Content Types (Chado) and click on Import

Note: We expect in this tutorial that you already have the “General” content types for Tripal. If you don’t have a
number of content types already listed that say “General” in the first column when you go to the Page Structure listing
then you will also want to select General in the following form.

20 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

Now run the submitted Tripal job from command line as follows if Drupal/Tripal is running as a web application:

drush trp-run-jobs --username=drupaladmin --root=/var/www/drupal/web

If Tripal is running from a docker container named $cntr_name, run:

docker exec -it $cntr_name drush trp-run-jobs --username=drupaladmin --root=/var/www/
→˓drupal/web

You will see the following output:

2024-02-14 21:34:50
Tripal Job Launcher
Running as user 'drupaladmin'

2024-02-14 21:34:50: Job ID 1.
2024-02-14 21:34:50: Calling: import_tripalentitytype_collection(Array)
[notice] Creating Tripal Content Types from: Genomic Content Types (Chado)
[notice] Content type, "Gene", created.
[notice] Content type, "mRNA", created.
[notice] Content type, "Phylogenetic Tree", created.
[notice] Content type, "Physical Map", created.
[notice] Content type, "DNA Library", created.
[notice] Content type, "Genome Assembly", created.

(continues on next page)

2.3. Example Genomic Site Setup 21

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

[notice] Content type, "Genome Annotation", created.
[notice] Content type, "Genome Project", created.
[notice] Attaching fields to Tripal content types from: Chado Fields for Genomic Content␣
→˓Types
:::
:::
:::

Now, when you go to Admin > Tripal > Page Structure you will see a Genomic Category that includes Gene and
other content required for the Example Genomic site.

2.3.2 Create an Organism Page

Before we can load our data we must first have an organism to which the data will be associated. Chado v1.3 does not
come preloaded with any organisms (although previous version of Chado do). For this tutorial we will import genomic
data for Citrus sinesis (sweet orange), so we must first create the organism.

We can add the organism using the Add Tripal Content link in the top administrative menu or from Content -> Add
Tripal Content. The Add Tripal Content page has several content types already available, including the Organism
content type.

Note: Drupal provides its own content types such as Article and Basic Page. These content types are referred to as
nodes in Drupal speak. You can add these content types via the Add Content page. Tripal v4 derived content types
are separated from these Drupal content types.

To add a new organism click the Organism link and a form will appear with multiple fields. Fill in the fields with these
values:

Field Name Value
Genus Citrus
Species sinensis
Abbreviation C. sinensis
Common name Sweet orange
Description Sweet orange is the No.1 citrus production in the world, accounting for about 70% of the total.

Brazil, Flordia (USA), and China are the three largest sweet orange producers. Sweet orange
fruits have very tight peel and are classified into the hard-to-peel group. They are often used
for juice processing, rather than fresh consumption. Valencia, Navel, Blood, Acidless, and other
subtypes are bud mutants of common sweet orange varieties. Sweet orange is considered as
an introgression of a natural hybrid of mandarin and pummelo; some estimates shows more
mandarin genomic background than pummelo. The genome size is estimated at 380Mb across
9 haploid chromosomes.

Leave all remaining fields empty and save the page. You should now have an organism page that appears as follows:

Note: The layout of the organism page is provided by the tripal_ds module that was enabled during Tripal installation.
If you decided not to enable that module then your page will look quite different.

22 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

2.3. Example Genomic Site Setup 23

Tripal 4.x Documentation, Release 4.x.alpha.1

24 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

Load data from NCBI Taxonomy

Tripal makes it easy to import additional information about any organisms within a Tripal site from the NCBI Taxonomy
database. The importer will only import data for species that you currently have in the Tripal database. The taxonomic
names must match those in the NCBI Taxonomy database. Currently, we only have a single organism (Citrus sinensis)
and we will import additional properties for this organism from NCBI but we can return later to import data for new
organisms we may add later. To import additional organism details, navigate to Tripal → Data Loaders → Taxonomy
Loader. The following page appears:

Click the checkbox beside the ‘Import taxonomy for existing species’ and click Import Taxonomy. Now run the sub-
mitted job:

2.3. Example Genomic Site Setup 25

https://www.ncbi.nlm.nih.gov/taxonomy
https://www.ncbi.nlm.nih.gov/taxonomy

Tripal 4.x Documentation, Release 4.x.alpha.1

drush trp-run-jobs --username=administrator --root=/var/www/drupal/web

If Tripal is running from a docker container named $cntr_name,

docker exec -it $cntr_name drush trp-run-jobs --username=drupaladmin --root=/var/www/
→˓drupal/web

You will see the following output:

024-02-14 18:58:58
Tripal Job Launcher
Running as user 'drupaladmin'

2024-02-14 18:58:58: Job ID 2.
2024-02-14 18:58:58: Calling: tripal_run_importer(5)
Running 'Taxonomy Loader' importer
NOTE: Loading of this file is performed using a database transaction. If it fails or is␣
→˓terminated prematurely then all insertions and updates are rolled back and will not be␣
→˓found in the database
Initializing Tree...
Insert phylotree: Created phylotree with phylotree_id: <em class="placeholder">1
Import phylotree summary: <em class="placeholder">0 nodes were successfully␣
→˓associated to content, <em class="placeholder">0 nodes could not be associated
Rebuilding Tree...
Percent complete: 0%. Memory: 34,690,376 bytes.
Updating Existing...
Percent complete: 100.00 %. Memory: 34,722,768 bytes.
Percent complete: 100.00 %. Memory: 34,723,296 bytes.
Import phylotree: Associated <em class="placeholder">Citrus sinensis to organism_
→˓id: <em class="placeholder">1
Import phylotree summary: <em class="placeholder">1 nodes were successfully␣
→˓associated to content, <em class="placeholder">0 nodes could not be associated
Done.

Now, Click on Tripal Content -> + Publish Tripal Content -> Content Type -> Organism Run the jobs as mentioned
earlier followed by :

docker exec -it $cntr_name drush cr

to clear the drush cache. Now, clicking on **Tripal Content -> Organism=Citrus ** will show Taxonomy Reference
Annotation of NCBI 2711 associated with Citrus sinensis. Editing of this organism also shows it.

Adding New Fields

Note: This feature has not yet been implemented for Tripal v4, documentation will be added once this feature is
available

We have now imported many new properties about the Citrus sinensis organism from NCBI Taxonomy. However, these
properties won’t show up on the page automatically. We need to tell Drupal that our organism pages now have new
property fields for display. To do this, navigate to Structure → Tripal Content Type and in the row for the Organism
content type, click Drop Down arrow and mouse over on Manage Fields. Here we see a list of fields that are associated
with an Organism content type.

26 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

Click the link at the top of the page + Check for new fields.

Note: The Check for new fields functionality has not yet been implemented for Tripal 4. Documentation will be
added when it is available.

Drupal now knows about these new fields! But if we were to look at the Citrus sinensis page we would see that the new
properties do not appear. Despite that Drupal knows about the fields it has disabled their display. To enable display
of these fields click the Manage Display tab at the top right of the page. Here all of the fields are organized into the
structure that they will be displayed on the page. Later in this tutorial a more formal description is provided about how
you use this interface to change the way the page appears. For now, we simply need to get the new fields to be shown.
Scroll to the bottom of the page and the new fields can be seen in the Disabled section.

2.3. Example Genomic Site Setup 27

Tripal 4.x Documentation, Release 4.x.alpha.1

We can move these newly created fields out of the Disabled section by clicking on the cross-hair icons to the left of
the name and dragging the field into a section above. Drag these fields into the Summary section underneath the
Summary Table. Notice in the screenshot below that the fields that were once in the Disabled section are now in the
Summary Table section. Click the Save button at the bottom to make all changes final.

Now, if we return to the organism page we will see these new properties were added to the page inside of the Summary
Table.

Further Customizations

You may not like this arrangement of fields. You may prefer to place these extra fields inside of a new pane rather than
inside of the Summary pane. Perhaps a pane named Additional Details. You can rearrange the order of these fields
and create new panes, as desired by following the more details instructions on the Configure Page Display page of this
tutorial. For example, the following shows these fields organized into a new pane named Additional Details which is
separate from the Summary Pane. Note the table of contents sidebar now lists the Summary and Additional Details
links. When clicked, the pane selected by the user migrates to the top of the page

Additional Resources:

Tripal 3 reference for creating organism

28 Chapter 2. Building your Site

https://tripal.readthedocs.io/en/latest/user_guide/example_genomics/organisms.html

Tripal 4.x Documentation, Release 4.x.alpha.1

Note: Database Reference Annotations that appear in the Organism creation page have not yet been implemented
for Tripal v4, documentation will be added once this feature is available.

2.3.3 Create a Genome Assembly Page

For this tutorial we will later import a set of genes, and their associated mRNA, CDS, UTRs, etc. Tripal’s Chado
loader for importing genomic data requires that an analysis be associated with all imported features. This has several
advantages, including:

• The source of features (sequences) can be traced. Even for features simply downloaded from a database, someone
else can see where the features came from.

• Provenance describing how the features were created can be provided (e.g. whole genome structural and func-
tional annotation description).

• The analysis associates all of the features together.

To create an analysis for loading our genomic data, navigate to the Add Tripal Content and click on the link: Analysis
The analysis creation page will appear:

2.3. Example Genomic Site Setup 29

Tripal 4.x Documentation, Release 4.x.alpha.1

Here you can provide the necessary details to help others understand the source of your data. For this tutorial, enter the
following:

30 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

Form
El-
e-
ment

Value

Name Whole Genome Assembly and Annotation of Citrus Sinensis (JGI)
De-
scrip-
tion
(Set
to
Full
HTML):

<p> Note: The following text comes from phytozome.org:</p> <p>
<u>Genome Size / Loci</u>
 This version (v.1) of the assembly is 319 Mb spread over 12,574 scaf-
folds. Half the genome is accounted for by 236 scaffolds 251 kb or longer. The current gene set (orange1.1)
integrates 3.8 million ESTs with homology and ab initio-based gene predictions (see below). 25,376 protein-
coding loci have been predicted, each with a primary transcript. An additional 20,771 alternative transcripts
have been predicted, generating a total of 46,147 transcripts. 16,318 primary transcripts have EST support
over at least 50% of their length. Two-fifths of the primary transcripts (10,813) have EST support over 100%
of their length.</p> <p> <u>Sequencing Method</u>
 Genomic sequence was generated using a whole
genome shotgun approach with 2Gb sequence coming from GS FLX Titanium; 2.4 Gb from FLX Stan-
dard; 440 Mb from Sanger paired-end libraries; 2.0 Gb from 454 paired-end libraries</p> <p> <u>Assembly
Method</u>
 The 25.5 million 454 reads and 623k Sanger sequence reads were generated by a col-
laborative effort by 454 Life Sciences, University of Florida and JGI. The assembly was generated by Brian
Desany at 454 Life Sciences using the Newbler assembler.</p> <p> <u>Identification of Repeats</u>

A de novo repeat library was made by running RepeatModeler (Arian Smit, Robert Hubley) on the genome
to produce a library of repeat sequences. Sequences with Pfam domains associated with non-TE functions
were removed from the library of repeat sequences and the library was then used to mask 31% of the genome
with RepeatMasker.</p> <p> <u>EST Alignments</u>
 We aligned the sweet orange EST sequences
using Brian Haas’s PASA pipeline which aligns ESTs to the best place in the genome via gmap, then filters
hits to ensure proper splice boundaries.</p>

Pro-
gram,
Pipeline
Name
or
Method
Name

Assembly and Annotation Performed by JGI

Soft-
ware
Ver-
sion

Phytozome v9

Data
Source
Name

JGI Citrus sinensis assembly/annotation v1.0 (154)

Data
Source
URI

http://www.phytozome.net/citrus.php

Note: Above, the description is provided as HTML code. However if you enabled the ckeditor module (as instructed
in the Tripal Prerequisites section), you should click the link Switch to plain-text editor found below the Description
field before cut-and-pasting the code above. Normally, you would enter the text free-hand but for this tutorial it is fastest
to cut-and-paste the HTML.

Note: Features Publication, Project and Database Reference Annotations have not yet been implemented for Tripal
v4, documentation will be added once this feature is available.

2.3. Example Genomic Site Setup 31

http://www.phytozome.net/citrus.php

Tripal 4.x Documentation, Release 4.x.alpha.1

After saving, you should have the following analysis page:

32 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

2.3. Example Genomic Site Setup 33

Tripal 4.x Documentation, Release 4.x.alpha.1

2.3.4 Setup Cross References to external sites

Note: This feature has not yet been implemented for Tripal v4, documentation will be added once this feature is
available

For our gene pages and mRNA pages we want to link back to JGI where we obtained the genes. Therefore, we want
to add a database reference for JGI. To add a new external databases, navigate to Tripal → Data Loaders → Chado
Databases and click the link titled Add a Database. The resulting page provides fields for adding a new database:

Enter the following values for the fields:

Field
Name

Value

Database
Name

Phytozome

De-
scrip-
tion

Phytozome is a joint project of the Department of Energy’s Joint Genome Institute and the Center for
Integrative Genomics to facilitate comparative genomic studies amongst green plants

URL http://www.phytozome.net/
URL
prefix

https://phytozome.jgi.doe.gov/phytomine/portal.do?externalid=PAC:{accession}

The URL prefix is important as it will be used to create the links on our gene pages. When an object (e.g. gene) is
present in another database, typically those database have a unique identifier (or accession) for the resource. If we want
to link records in our database to records in the remote database we need to provide a URL prefix that Tripal will use
to create the URL. Typically a remote database has a standard URL schema by which someone can specify a unique
resource. Often the resource accession is the last word in the URL to allow others to easily build the URL for any
resource. Tripal can take advantage of these type URL schemas via the URL Prefix field.

The URL prefix should be the URL used to identify a resource. Two tokens, {db} and {accession}, can be used in
place of where the database name and accession might be needed to create the URL. If no {db} or {accession} are
provided in the URL prefix then Tripal will append the database name and the accession to the URL prefix to form the
final URL. In this example, the Phytozome URL only requires the accession. The position where that accession will
be placed is indicated with the {accession} token. The {db} token is not needed.

Click Add.

We now have added a new database!

2.3.5 Import the Gene Ontology

Before we proceed with setup of our example genomics site we will want to load the Gene Ontology. This is because
we will be loading a whole genome, genes and transcripts with annotations. These annotations include Gene Ontology
terms. To load the Gene Ontolgoy, navigate to Tripal → Data Loaders → OBO Vocabulary Loader. You will see
the following page:

34 Chapter 2. Building your Site

http://www.phytozome.net/
https://phytozome.jgi.doe.gov/phytomine/portal.do?externalid=PAC

Tripal 4.x Documentation, Release 4.x.alpha.1

The Ontology loader allows you to select a pre-defined vocabulary for loading or allow you to provide your own. If
you provide your own, you give the remote URL of the OBO file or provide the full path on the local web server where
the OBO file is located. In the case of a remote URL, Tripal first downloads and then parses the OBO file for loading.
If you do provide your own OBO file it will appear in the saved drop down list for loading of future updates to the

2.3. Example Genomic Site Setup 35

Tripal 4.x Documentation, Release 4.x.alpha.1

ontology.

To import for example, the Sequence Ontology, select it from the drop-down and click the Import Vocabulary button.
You will notice a job is added to the jobs system. Now manually launch the jobs

drush trp-run-jobs --username=administrator --root=/var/www/html

If Tripal is running from a docker container named $cntr_name,

docker exec -it $cntr_name drush trp-run-jobs --username=drupaladmin --root=/var/www/
→˓drupal/web

Note: Loading an Ontology may take several hours.

2.3.6 Import a Genome Assembly + Annotation

Now that we have our organism and whole genome analysis ready, we can begin loading genomic data. For this tutorial
only a single gene from sweet orange will be loaded into the databsae. This is to ensure we can move through the
tutorial rather quickly. The following datasets will be used for this tutorial:

• Citrus sinensis-orange1.1g015632m.g.gff3

• Citrus sinensis-scaffold00001.fasta

• Citrus sinensis-orange1.1g015632m.g.fasta

One of the new features available in many of the Tripal v4 data loaders is an HTML5 file upload element which allows
administrators and users to upload large files reliably. This removes the requirement in previous versions of this tutorial
to download these files directly on the server and provide a path to the file. Instead, if you have the file on your current
local machine you can now simply upload it for loading.

Tripal v4 Data Loaders has the ability to provide a remote path of a file to be loaded alleviating the need to transfer
large files multiple times and eases the loading process.

36 Chapter 2. Building your Site

http://tripal.info/sites/default/files/Citrus_sinensis-orange1.1g015632m.g.gff3
http://tripal.info/sites/default/files/Citrus_sinensis-scaffold00001.fasta
http://tripal.info/sites/default/files/Citrus_sinensis-orange1.1g015632m.g.fasta

Tripal 4.x Documentation, Release 4.x.alpha.1

Loading a GFF3 File

The gene features (e.g. gene, mRNA, 5_prime_UTRs, CDS 3_prime_UTRS) are stored in the GFF3 file downloaded
in the previous step. We will load this GFF3 file and consequently load our gene features into the database. Navigate
to Tripal → Data Loaders → Chado GFF3 File Loader.

2.3. Example Genomic Site Setup 37

Tripal 4.x Documentation, Release 4.x.alpha.1

Enter the following:

Field Name Value
File Upload the file name Citrus_sinensis-orange1.1g015632m.g.gff3
Analysis Whole Genome Assembly and Annotation of Citrus sinensis
Existing Organism Citrus sinensis
Landmark Type supercontig
All other options leave as default

Note: The Landmark Type is provided for this demo GFF3 file because the chromosome is not defined in the file, only
the genomic features on the chromosomes. The landmark type is not needed if the GFF3 file has the chromosomes
(scaffolds or contigs) defined in the GFF3 file.

Finally, click the Import GFF3 file button. You’ll notice a job was submitted to the jobs subsystem. Now, to complete
the process we need the job to run. We’ll do this manually:

38 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

drush trp-run-jobs --username=administrator --root=/var/www/drupal/web

If Tripal is running from a docker container named $cntr_name,

docker exec -it $cntr_name drush trp-run-jobs --username=drupaladmin --root=/var/www/
→˓drupal/web

You should see output similar to the following:

2024-02-14 20:47:23
Tripal Job Launcher
Running as user 'drupaladmin'

2024-02-14 20:47:23: Job ID 3.
2024-02-14 20:47:23: Calling: tripal_run_importer(6)
Running 'Chado GFF3 File Loader' importer
NOTE: Loading of this file is performed using a database transaction. If it fails or is␣
→˓terminated prematurely then all insertions and updates are rolled back and will not be␣
→˓found in the database
Opening //var/www/drupal/web/sites/default/files/tripal/users/1/Citrus_sinensis-orange1.
→˓1g015632m.g.gff3
Opening temporary cache file: /tmp/TripalGFF3Import_1Zt2hI
Step 1 of 27: Caching GFF3 file...
Percent complete: 1.20 %. Memory: 33,996,128 bytes.
Percent complete: 3.06 %. Memory: 34,003,168 bytes.
:::
:::
Step 27 of 27: Adding sequences data (Skipped: none available)...
Done.

Note: For very large GFF3 files the loader can take quite a while to complete.

Loading FASTA files

Using the Tripal GFF3 loader we were able to populate the database with the genomic features for our organism.
However, those features now need nucleotide sequence data. To do this, we will load the nucleotide sequences for the
mRNA features and the scaffold sequence. Navigate to the Tripal → Data Loaders → Chado FASTA File Loader.

2.3. Example Genomic Site Setup 39

Tripal 4.x Documentation, Release 4.x.alpha.1

40 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

2.3. Example Genomic Site Setup 41

Tripal 4.x Documentation, Release 4.x.alpha.1

Before loading the FASTA file we must first know the Sequence Ontology (SO) term that describes the sequences we
are about to upload. We can find the appropriate SO terms from our GFF file. In the GFF file we see the SO terms that
correspond to our FASTA files are ‘scaffold’ and ‘mRNA’.

Note: It is important to ensure prior to importing, that the FASTA loader will be able to appropriately match the
sequence in the FASTA file with existing sequences in the database. Before loading FASTA files, take special care to
ensure the definition line of your FASTA file can uniquely identify the feature for the specific organism and sequence
type.

For example, in our GFF file an mRNA feature appears as follows:

scaffold00001 phytozome6 mRNA 4058460 4062210 . + . ␣
→˓ID=PAC:18136217;Name=orange1.1g015632m;PACid=18136217;Parent=orange1.1g015632m.g

Note that for this mRNA feature the ID is PAC:18136217 and the name is orange1.1g015632m. In Chado, features
always have a human readable name which does not need to be unique, and also a unique name which must be unique
for the organism and SO type. In the GFF file, the ID becomes the unique name and the Name becomes the human
readable name.

In our FASTA file the definition line for this mRNA is:

>orange1.1g015632m PAC:18136217 (mRNA) Citrus sinensis

By default Tripal will match the sequence in a FASTA file with the feature that matches the first word in the definition
line. In this case the first word is orange1.1g015632m. As defined in the GFF file, the name and unique name are
different for this mRNA. However, we can see that the first word in the definition line of the FASTA file is the name
and the second is the unique name. Therefore, when we load the FASTA file we should specify that we are matching

42 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

by the name because it appears first in the definition line.

If however, we cannot guarantee the that feature name is unique then we can use a regular expressions in the Advanced
Options to tell Tripal where to find the name or unique name in the definition line of your FASTA file.

Note: When loading FASTA files for features that have already been loaded via a GFF file, always choose “Update
only” as the import method. Otherwise, Tripal may add the features in the FASTA file as new features if it cannot
properly match them to existing features.

Now, enter the following values in the fields on the web form:

Field Name Value
FASTA file Upload the file named Citrus_sinensis-scaffold00001.fasta
Analysis Whole Genome Assembly and Annotation of Citrus sinensis
Organism Citrus sinensis (Sweet orange)
Sequence type supercontig (scaffold is an alias for supercontig in the sequence ontology)
Method Update only (we do not want to insert these are they should already be there)
Name Match Type Name

Click the Import Fasta File, and a job will be added to the jobs system. Run the job:

drush trp-run-jobs --username=administrator --root=/var/www/html

Notice that the loader reports the it “Found 1 sequences(s).”. Next fill out the same form for the mRNA (transcripts)
FASTA file:

Field Name Value
FASTA file Upload the file named Citrus_sinensis-orange1.1g015632m.g.fasta
Analysis Whole Genome Assembly and Annotation of Citrus sinensis
Organism Citrus sinensis (Sweet orange)
Sequence type mRNA
Method Update only
Name Match Name

The FASTA loader has some advanced options. The advanced options allow you to create relationships between features
and associate them with external databases. For example, the definition line for the mRNA in our FASTA file is:

>orange1.1g015632m PAC:18136217 (mRNA) Citrus sinensis

Here we have more information than just the feature name. We have a unique Phytozome accession number (e.g.
PAC:18136217) for the mRNA. Using the External Database Reference section under Additional Options we can
import this information to associate the Phytozome accession with the features. A regular expression is required to
uniquely capture that ID. In the example above the unique accession is 18136217. Because Tripal is a PHP application,
the syntax for regular expressions follows the PHP method. Documentation for regular expressions used in PHP can
be found here. Enter the following value to make the associate between the mRNA and it’s corresponding accession at
Phytozome:

2.3. Example Genomic Site Setup 43

http://php.net/manual/en/reference.pcre.pattern.syntax.php

Tripal 4.x Documentation, Release 4.x.alpha.1

Field Name Value
External Database Phytozome
Regular expression for the ac-
cession

^.*PAC:(d+).*$

Remember, we have the name Phytozome in our External Database drop down because we manually added it as a
database cross reference earlier in the turorial. After adding the values above, click the Import FASTA file button, and
manually run the submitted job:

drush trp-run-jobs --username=administrator --root=/var/www/html

Now the scaffold sequence and mRNA sequences are loaded!

Note: It is not required to load the mRNA sequences as those can be derived from their alignments with the scaffold
sequence. However, in Chado the feature table has a residues column. Therefore, it is best practice to load the sequence
when possible.

Note: Features written below have not yet been implemented for Tripal v4, documentation will be updated once they
are available

Creating Gene Pages

Now that we’ve loaded our feature data, we must publish them. This is different than when we manually created our
Organism and Analysis pages. Using the GFF and FASTA loaders we imported our data into Chado, but currently
there are no published pages for this data that we loaded. To publish these genomic features, navigating to Structure
→ Tripal Content Type and click the link titled Publish Chado Content.
Here we can specify the types of content to publish. For our site we want to offer both gene and mRNA pages (these
types were present in our GFF file). First, to create pages for genes select ‘Gene’ from the dropdown. A new Filter
section is present and when opened appears as follows.

The Filters section allows you to provide filters to limit what you want to publish. For example, if you only want to
publish genes for a single organism you can select that organism in the Organism drop down list. We only have one
organism in our site, but for the sake of experience, add a filter to publish only genes for Citrus sinesis by selecting it
from the Organism drop down. Scroll to the bottom a click the Publish button. A new job is added to the job queue.
Manually run the job:

drush trp-run-jobs --username=administrator --root=/var/www/html

You should see output similar to the following:

Tripal Job Launcher
Running as user 'administrator'

Calling: tripal_chado_publish_records(Array, 12)

NOTE: publishing records is performed using a database transaction.
If the load fails or is terminated prematurely then the entire set of
is rolled back with no changes to the database

(continues on next page)

44 Chapter 2. Building your Site

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

Succesfully published 1 Gene record(s).

Here we see that 1 gene was successfully published. This is because the GFF file we used previously to import the
genes only had one gene present.

Now, repeat the steps above to publish the mRNA content type. You should see that 9 mRNA records were published:

Tripal Job Launcher
Running as user 'administrator'

Calling: tripal_chado_publish_records(Array, 13)

NOTE: publishing records is performed using a database transaction.
If the load fails or is terminated prematurely then the entire set of
is rolled back with no changes to the database

Succesfully published 9 mRNA record(s).

Note: It is not necessary to publish all types of features in the GFF file. For example, we do not want to publish
features of type scaffold. The feature is large and would have many relationships to other features, as well as a very
long nucleotide sequence. These can greatly slow down page loading, and in general would be overwhelming to the
user to view on one page. As another example, each mRNA is composed of several CDS features. These CDS features
do not need their own page and therefore do not need to be published.

Now, we can view our gene and mRNA pages. Click the Find Tripal Content link. Find and click the new page titled
orange1.1g015632m.g. Here we can see the gene feature we added and its corresponding mRNA’s.

Next find an mRNA page to view. Remember when we loaded our FASTA file for mRNA that we associated the record
with Phytozome. On these mRNA pages you will see a link in the left side bar titled Database Cross Reference.
Clicking that will open a panel with a link to Phytozome. This link appears because:

• We added a Database Cross Reference for Phytozome in a previous step

• We associated the Phytozome accession with the features using a regular expression when importing the FASTA
file.

All data that appears on the page is derived from the GFF file and the FASTA files we loaded.

Customizing Transcripts on Gene Pages

By default the gene pages provided by Tripal will have a link in the sidebar table of contents named Transcripts and
when clicked a table appears that lists all of the transcripts (or mRNA) that belong to the gene. The user can click to
view more information about each published transcript.

Sometimes however, more than just a listing of transcripts is desired on a gene page. You can customize the information
that is presented about each transcript by navigating to the gene content type at Structure → Tripal Content Types
and clicking mange fields in the Gene row. This page allows you to customize the way fields are displayed on the gene
page. Scroll down the page to the Transcript row and click the edit button.

Open the field set titled Transcript (mRNA) Field Selection to view a table that lists all of the available fields for a
transcript.

On this page you can check the boxes next to the field that you want to show for a transcript on the gene page. For
this example, we will select the fields Name, Identifier, Resource Type, Anotations, and Sequences (they may not

2.3. Example Genomic Site Setup 45

Tripal 4.x Documentation, Release 4.x.alpha.1

be in this order on your own site). You can control the order in which fields will be shown by dragging them using the
crosshairs icon next to each one. Scroll to the bottom of the page and click the Save Settings button.

Next return to the gene page, reload it, and click on the Transcripts link. Now you are provided a select box with the
transcript names. When a transcript is selected, the pane below will populate with the fields that you selected when
editing in the Transcript field.

You can return to the Transcript field edit page under the Gene content type at any time to add, remove or change the
order of fields that appear for the transcript.

Note: Transcripts on a gene page can only be customized if all of them are published. If not, the default table listing
is shown.

46 Chapter 2. Building your Site

CHAPTER

THREE

GUIDING YOUR USERS

47

Tripal 4.x Documentation, Release 4.x.alpha.1

48 Chapter 3. Guiding your Users

CHAPTER

FOUR

SITE ADMINISTRATION

4.1 File Management

4.1.1 User Quotas

Data importers that use the Tripal API and Tripal supported widgets automatically associate uploaded files with users.
If you are allowing end-users to upload files you may want to consider adding quotas to prevent the server storage from
filling. To ensure that users do not exceed the limits of the server a quota system is available. Navigate to Administer
> Tripal > Tripal Managed Files and click the Disk User Quotas tab to reveal the following page:

49

Tripal 4.x Documentation, Release 4.x.alpha.1

First, the total amount of space consumed by all uploaded files is shown at the top of the page. Initially this will indicate
0 B (for zero bytes); as users upload files this value will change. You may return to this page in the future to check
how much space is currently used by user uploads. Here you can also specify the default system-wide quota that all
users receive. By default this is set to 64 Megabytes and an expiration of 60 days. Once a file has existed on the site
for 60 days the file is marked for deletion and will be removed when the Drupal cron is executed. The default of 64MB
per user is most likely too small for your site. Adjust this setting and the days to expire as appropriate for your site’s
expected number of users and storage limitations and click the Save button to preserve any changes you have made.

In addition to the default settings for all users, you may want to allow specific users to have a larger (or perhaps smaller)
quota. You can set user-specific quotas by clicking the Add Custom User Quota link near the bottom of the page. The
following page appears:

50 Chapter 4. Site Administration

Tripal 4.x Documentation, Release 4.x.alpha.1

Here you must specify the Drupal user name of the user who should be granted a custom quota. This field will auto
populate suggestions as you type to help you find the correct username. Enter the desired quota size and expiration
days and click the Submit button. You will then see the user-specific quota listed in the table at the bottom of the page:

4.1. File Management 51

Tripal 4.x Documentation, Release 4.x.alpha.1

4.1.2 Users’ Files

Users with permission to upload files are able to use the Tripal file uploader to add files to the server. The core Tripal
Data Importers use the Tripal file uploader and extension modules may use it as well. You can enable this functionality
for users by Navigating to Admin > People and click the Permissions Tab. next scroll to the Tripal section and set the
Upload Files permissions as desired for your site. The following screenshot shows the permission on a default Drupal
site.

52 Chapter 4. Site Administration

Tripal 4.x Documentation, Release 4.x.alpha.1

Users who have the ability to upload files can manage files on their own Account pages.

As described in the previous section, the site administrator can set a system-wide or user-specific default expiration
number of days for a file. This means files will be removed automatically from the server once their expiration data is
set.

Note: Automatic removal of files can only occur if the Drupal cron is setup to run automatically.

4.2 Publishing

Warning: This functionality is still being actively developed. Currently you cannot create pages for records added
to chado through any other method than the Create Content forms.

This work will be completed and documented before the next release of Tripal 4.

4.3 Tripal Jobs

Tripal comes with a robust job system for running on-demand or scheduled jobs. These jobs can be run manually or
automatically using the Tripal Job Daemon.

4.3.1 Manual Job Execution

Overview

At various times, you may be given a command to run in order to launch a job. For example, when initially setting up
the site to install and prepare Chado, or when using of the importers. The command will typically take this form:

drush trp-run-jobs --job_id=2 --username=admin --root=/var/www/tripal4/web

Let’s break that down:

• trp-run-jobs

This is the command. There are other commands available, see the section below.

4.2. Publishing 53

Tripal 4.x Documentation, Release 4.x.alpha.1

• --job_id=2

This specifies which job in the queue that will run.

• --username=admin

This is the username of the owner of the job. This is important as it can help track down changes
made to the site.

• --root=/var/www/tripal4/web/

This is the root directory of the current Drupal site. This is especially important to specify when
multiple sites are installed.

Commands and Arguments

There are two main Drush commands related to the Tripal Job system:

• trp-run-jobs

This command will run jobs that are on the queue. If the job_id flag is provided, it will run that
specific job, otherwise it will run all jobs that are on the queue in chronological order based on when
they were submitted. The following arguments are available:

– job_id [optional] - Specify the number (id) of the job that is to be run.

– username [required] - Specify the username of the person who is running the job.

• trp-rerun-job — This command will rerun a specified job. The job_id flag is required.

The following is a list of arguments

4.3.2 Automating Job Execution

Currently, running jobs automatically is not supported. This functionality will come with the upgrade of the Tripal
Daemon module.

Warning: These docs are still being developed. In the future this page will contain a very short introduction to
user management in Drupal and practical examples for site administration of a Tripal site.

4.4 User Permissions

Users : Anyone who visits your website including you. There are three groups of users. anonymous users (who are
not logged in), authenticated users (who are logged in) and administrative users (created when a site was installed, or
User 1).

Permissions : A group of actions (example - import a GFF3 file, view/edit content and change configuration). Permis-
sions are defined by the modules that provide the actions.

Roles : Permissions are grouped into roles, each of which can be defined and then permissions are granted. Exaample
roles are Curators or Data Submittors.

Users and permissions allow you to give certain groups for example, researchers access to private data. Roles can help
you setup groups of collaborators so you can assign the permission to the group as a whole which makes it easier if any
one member leaves or joins the group.

Refer to https://www.drupal.org/docs/user_guide/en/user-concept.html for more details.

54 Chapter 4. Site Administration

https://www.drupal.org/docs/user_guide/en/user-concept.html

Tripal 4.x Documentation, Release 4.x.alpha.1

It is a good practice to make several roles on your Tripal site. For example, for managing biological data and knowl-
edgebases like model organism database, you might want a Curator role that allows data curators to curate information
on a specific organism using appropriate unique traceable identifiers, and providing necessary metadata including
source and provenance. a set of genes, and their associated mRNA, CDS, UTRs, etc. For more information, see
https://en.wikipedia.org/wiki/Biocuration.

4.4.1 Creating Roles to enable Curation

Biocuration involves the collection, curation, annotation, validation, writing related grants, and publications and inte-
gration of information related to the biological sciences into databases or resources.

Here is a walk through creating a “Curator” role in Tripal based on a need and then assign these roles permissions by
the Administrator. For example, a curator of genomic data would need access to specific importers and content types
associated with the genome of the organism.

4.4.2 Steps

From the top menu :

Home -> Administration -> People -> Roles ->

You will find default roles Anonymous user, Authenticated user, and Administrator already present.

Create User

From the top menu :

Home -> Administration -> People -> +Add User ->
• Username : curator_user

• Password : abcd_123_!@#

• Roles : Content editor

Click on Create new account leaving other items as default

From the top menu -> People -> curator_user now appears in list of Usernames.

Create Roles and Assign them to Users

Home -> Administration -> People -> +Add Role ->

Type Curator for Role name in text box and click Save. A status message is displayed.

And you can find the Curator Role added to the list of Roles under Name.

To perform same action on multiple users, for example, to add the Curator role to more than 1 user, from the top menu,

Home -> Administration -> People -> click inside checkbox before all usernames having prefix curator_.

Click on dropdown next to Action -> select Add the Curator role to the selected users -> Apply to selected items.

4.4. User Permissions 55

https://en.wikipedia.org/wiki/Biocuration

Tripal 4.x Documentation, Release 4.x.alpha.1

56 Chapter 4. Site Administration

Tripal 4.x Documentation, Release 4.x.alpha.1

4.4. User Permissions 57

Tripal 4.x Documentation, Release 4.x.alpha.1

58 Chapter 4. Site Administration

Tripal 4.x Documentation, Release 4.x.alpha.1

All user names having prefix curator_ now have the role of Curator.

Home -> Administration -> People ->

Curator Roles are now assigned to the users under Roles.

4.4. User Permissions 59

Tripal 4.x Documentation, Release 4.x.alpha.1

Edit User’s Role

To Edit options for a user

Home -> Administration -> People -> curator_user -> Edit (under Operations column)

To remove the Content editor role for this user,

Uncheck Content Editor Role for example, make any other changes in this screen as required and Click Save.

60 Chapter 4. Site Administration

Tripal 4.x Documentation, Release 4.x.alpha.1

Permissions for Role to define collaborative groups

From the top menu -> People -> Permissions
Click in applicable checkboxes for Content editor.

The following Tripal content sections are available to assign permission options for each Role :
• Block

• Block Content

• Comment

• Configuration Manager

• Contact

• Contextual Links

• Devel

• Devel PHP

• Field UI

• File

• Filter

• Image

• Node

• Path

• Search

• Shortcut

• System

• Taxonomy

• Toolbar

• Tour

• Tripal

• Tripal Chado

• Update Manager

• User

• Views UI

Some of the checkboxes are already checked are some are not changeable.

An administrator can change the default permissions for roles. For example, to change the recently created role of
Curator,

From the top menu click on -> People -> Permissions.

4.4. User Permissions 61

Tripal 4.x Documentation, Release 4.x.alpha.1

In this screen individual permissions can be set for a Role by the administrator viewing the permissions checked for
other roles.

Here are some recommended permissions checked for the Role of the Curator in the File, Node and Tripal categories:

File permissions

Node permissions

62 Chapter 4. Site Administration

Tripal 4.x Documentation, Release 4.x.alpha.1

Tripal permissions

Permissions checked for the Curator role shown in screenshots above help in editing, revising and reverting content in
addition to several others not available to other Roles for importing content into Tripal, edit and maintain them.

Site administrators wanting to allow their curators to delete Tripal content can do so by applying the “Delete Tripal
Content” permission. If their curator also imports data via available custom data importers like GFF3 importer they
may want to assign the Tripal Importer permissions, publish and “Upload Tripal Data files”.

4.4. User Permissions 63

Tripal 4.x Documentation, Release 4.x.alpha.1

Permissions by Term

The Permissions by Term is a module that extends Drupal by providing functionality for restricting view access to
single nodes via taxonomy terms. This module can be useful for Tripal users interested in creating, documenting and
maintaining Ontologies, for example.

Taxonomy term permissions can be coupled to specific user accounts and/or user roles. It relies on the entities, which
are shipped traditionally with Drupal core: taxonomy terms and nodes.

More information is available at https://www.drupal.org/docs/contributed-modules/permissions-by-term and https://
www.drupal.org/project/permissions_by_term.

An example use-case in Tripal is Sub-editors working on a research publication. Collecting content together in a
taxonomy term allows you to manage that content as a sub site and assign its own administrator. This is useful where
you might need someone to produce lots of different types of content but only want them to be able to add it to a specific
area of the website that is working on the publication.

Sub-communities within a membership organisation. The topics a membership organisation may cover can be very
broad and individual members may only be interested in seeing content from a sub-selection of the areas it covers.
The sub-community may have their own executive members who can contribute to the research topic or approve new
members to their sub-community.

Additional Resources:
• Official Drupal Docs: What are Users, Roles, and Permissions?

• Official Drupal Docs: Creating a Role

• Official Drupal Docs: Assigning Permissions to a Role

• Official Drupal Docs: Changing a User’s Roles

• Official Drupal Docs: Creating a User Account

4.5 Database Backups

4.5.1 The Importance of Backups

Drupal, on which Tripal is based, is not like a word processor or spreadsheet, there is no “Undo” function. For this
reason, and to guard against hard drive failures, etc. it is essential to maintain current backups of your PostgreSQL
database.

4.5.2 How to make a backup

You can use the PostgreSQL command pg_dump to make a backup of your database. Here is a simple script that makes
a database backup, and saves it in a file which is named using today’s date. You would of course substitute your site’s
hostname, database name, file path, username, and password.

#!/bin/bash

file="/var/www/drupal9/web/$(date +%Y%m%d).sql"
echo "Backup Tripal database to \"$file\""

PGPASSWORD=drupaldevelopmentonlylocal \
pg_dump \

(continues on next page)

64 Chapter 4. Site Administration

https://www.drupal.org/docs/contributed-modules/permissions-by-term
https://www.drupal.org/project/permissions_by_term
https://www.drupal.org/project/permissions_by_term
https://www.drupal.org/docs/user_guide/en/user-concept.html
https://www.drupal.org/docs/user_guide/en/user-new-role.html
https://www.drupal.org/docs/user_guide/en/user-permissions.html
https://www.drupal.org/docs/user_guide/en/user-roles.html
https://www.drupal.org/docs/user_guide/en/user-new-user.html

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

--verbose \
--format=plain \
--username="drupaladmin" \
--host=localhost \
"sitedb" \
> "$file"

You could then run this script daily to make sure you always have a current database backup. One way to do that is to
use cron on your system. Although setting that up is beyond the scope of this documentation, you may find this tutorial
by GeeksForGeeks helpful.

4.5.3 How to restore from a backup

For convenience we can first specify the PostgreSQL password once so we don’t need to enter it for each step. You
may prefer a more secure authentication method, but for learning Tripal on a local system this is the simplest method.
Substitute your password here.

export PGPASSWORD=drupaldevelopmentonlylocal

In order to restore from a backup, we first need to remove the current database, and create a new empty database. This
will erase all data, so make sure you successfully made a backup first!

dropdb \
--username="drupaladmin" \
--host=localhost \
--if-exists sitedb

createdb \
--username="drupaladmin" \
--host=localhost \
sitedb -O drupaladmin

Restoring data into the database is then performed as follows, use the file name generated by the previous backup step,
for example it might be 20240506.sql.

psql \
--set ON_ERROR_STOP=on \
--username="drupaladmin" \
--host=localhost \
--dbname=sitedb \
< substitutefilenamehere.sql

While not essential, for your convenience you may want to place chado in the default search path. To do that, execute
this command:

psql -h localhost -U drupaladmin -d sitedb \
-c "ALTER DATABASE sitedb SET search_path = '$user', public, chado"

Finally, it is recommended to rebuild the Drupal caches

drush cache:rebuild

4.5. Database Backups 65

https://www.geeksforgeeks.org/crontab-in-linux-with-examples/
https://www.geeksforgeeks.org/crontab-in-linux-with-examples/
https://www.postgresql.org/docs/current/auth-methods.html

Tripal 4.x Documentation, Release 4.x.alpha.1

4.5.4 Best Practices

If you are just learning Tripal, we recommend you start out with a Tripal Docker container. This makes initial installa-
tion as easy as possible, and if you make mistakes with your site, it is easy to start over with a new clean starting point.
You can also backup and restore the database inside your docker container as described earlier. Another approach when
using docker is to use docker commit to create an image from a running container at the point you want to save. Then
you can use the docker run command with this committed image in order to start a fresh site at the exact same point.

If you have a publicly facing web site, which we usually call a “Production” site, it is highly recommended to also have
a “Staging” or “Testing” site. Here you can load a database backup from your production site, and then test new loaders
or procedures on the staging site without danger of harming your production site. Once your procedures are verified as
working correctly, only then do you make changes to your production site.

66 Chapter 4. Site Administration

https://docs.docker.com/reference/cli/docker/container/commit/

CHAPTER

FIVE

EXTENDING TRIPAL

5.1 Object-Oriented Development

While object-oriented development may be initially daunting, it is now well established as a best practice. For a general
overview of PHP best practices, read through phptherightway.com. Additionally, Drupal lists a multitude of resources
on their Background to Custom Module Development documentation. From the Tripal perspective, it is important to
note that Tripal 4 follows the object-oriented design patterns laid out by Drupal.

5.2 Controlled Vocabularies (CVs)

Controlled vocabularies are simply a collection of agreed upon names (knowns as terms) for items of interest. Within
biology this may mean we have a controlled vocabulary describing the parts of a gene or the types of germplasm. And
ontology is a specialized type of controlled vocabulary with additional structure including relationships between terms
(i.e. the sequence ontology).

Tripal and Chado both use controlled vocabulary terms extensively to categorize data and metadata. The use of con-
trolled vocabulary terms also allows both Tripal and Chado to be extremely flexible while also remaining very descrip-
tive with rich metadata.

As you can see in the figure below, controlled vocabularies are collections of 1+ ID spaces and each ID Space is a
collection of terms. The ID space provides the unique namespace for the term accession and a controlled vocabulary
groups a bunch of similar terms.

67

https://phptherightway.com/
https://www.drupal.org/docs/8/creating-custom-modules/getting-started-background-prerequisites-drupal-8
https://www.drupal.org/docs/8/creating-custom-modules/getting-started-background-prerequisites-drupal-8#s-object-oriented-programming

Tripal 4.x Documentation, Release 4.x.alpha.1

In Tripal 4, the Controlled Vocabulary API is designed to enable flexible backend storage and thus can be completely
independent of Chado. That said, there is a default implementation of this API provided by the core Tripal Chado
module that tightly integrates Tripal and Chado.

5.2.1 How are CVs used in Tripal?

Controlled vocabulary terms (CVTerms) are used to define Tripal Content Types. Additionally, all Tripal Fields are
defined using a controlled vocabulary term. As such, all biological content managed by Tripal is associated with a
categorizing controlled vocabulary term and each piece of metadata defining a single piece of content is also defined
using a controlled vocabulary. This ensures that Tripal content is semantic web ready, as well as, ensuring it is well
organized for both researchers and computer software.

5.2.2 Identifying a CVTerm

Before creating a new content type for your site you must identify a CVTerm that best matches the content type you
would like to create. CVs are plentiful and at times selection of the correct term from the right vocabulary can be
challenging. If there is any doubt about what term to use, then it is best practice to reach out to others to confirm your
selection. The Tripal User community is a great place to do this by posting a description of your content type and your
proposed term on the Tripal Issue Queue. Confirming your term with others will also encourage re-use across Tripal
sites and improve data exchange capabilities.

The EBI’s Ontology Lookup Service is a great place to locate terms from public vocabularies. At this site you can
search for terms for your content type. If you can not find an appropriate term in a public vocabulary or via discussion
with others then you create a new local term within the local vocabulary that comes with Tripal.

Warning: Creation of local terms is discouraged but sometimes necessary. When creating local terms, be both
precise and verbose in your description.

68 Chapter 5. Extending Tripal

https://www.w3.org/standards/semanticweb/
https://github.com/tripal/tripal/issues
http://www.ebi.ac.uk/ols/index

Tripal 4.x Documentation, Release 4.x.alpha.1

5.2.3 Retrieving Tripal Terms

Terms can be retrieved by

1. Using the Tripal Vocabulary Manager to search terms by name within a vocabulary.

2. Using the Tripal ID Space Manager to search terms by name or accession within an ID Space.

3. Using the Tripal ID Space Manager to get parent or child terms of an existing term.

4. Using the static TripalTerm::suggestTerms method to search by name across vocabularies and ID spaces.

Table 1: Ways to search for TripalTerms

Class Method Return Search Property IDSpace* Vocabulary*
TripalTerm suggestTerms+ array name No No
TripalVocabulary getTerms array name No Yes
TripalIdSpace getTerms array name Yes Yes
TripalIdSpace getTerm TripalTerm accession Yes Yes
TripalIdSpace getParent TripalTerm TripalTerm Yes Yes
TripalIdSpace getChildren array TripalTerm Yes Yes

* These two columns indicate information which is required for the search.
+ This is a static method of TripalTerm.

5.2.4 Chado CV module

In Chado, controlled vocabularies and ontologies are stored in the CV Module. This module provides flexible storage
of the individual terms, as well as, the relationships between them.

5.3 Biological Data Storage

A critical component of Tripal is interfacing between biological data stores and Drupal.

The Tripal Chado core module integrates Drupal with the GMOD Chado schema to provide a great foundation of sup-
port for biological data with the ability to store sequence, sequence comparisons, germplasm, phenotypes, genotypes,
ontologies, publications, and phylogeny, as well as associated metadata and relations for each of these data types. In-
tegration with Chado allows Tripal to support most biological data types out of the box and use of a common schema
allows Tripal sites to share data and Tripal extension modules to be built to enforce best practices.

That said, there are still situations in which you may want to support additional data storage backends such as graph
databases, NoSQL databases, or flat files (e.g. variant call format: VCF). Tripal seamlessly supports additional data
storage backends through a variety of APIs which will be described here.

5.3. Biological Data Storage 69

http://gmod.org/wiki/Chado_CV_Module

Tripal 4.x Documentation, Release 4.x.alpha.1

5.3.1 Tripal DBX: Generic cross database support for Drupal

Tripal has always focused on providing cross database schema support. From the very first version, this support focused
on providing integration between Drupal and the GMOD Chado Schema. With Tripal 4, we have made a generic base
for our Chado integration which is known as Tripal DBX. This ensures that we can still provide high integration between
Drupal and Chado, while also proving a really solid, well-documented API for additional biological data storage options.

Tripal DBX extends the Drupal Database API. Specifically, it extends two core Drupal abstract classes:

• DrupalCoreDatabaseConnection: a Drupal-specific extension of the PDO database abstraction class in PHP.

• DrupalCoreDatabaseSchema: provides a means to interact with a schema including management tasks such as
adding tables.

Currently Tripal DBX relies on the Drupal PostgreSQL implementations of these classes (PostgreSQL Connection and
PostgreSQL Schema), although there is structure in place to expand it to other Drupal database drivers.

Tripal DBX Connection

There are two main parts of the Drupal Connection class that the Tripal DBX Api overrides:

A) One Database Connection per Instance:
Drupal attempts to minimize the number of connections to the database by only creating a new connection if one does
not already exist. This makes sense in the context of a single database schema; however, when dealing with multiple
schema you will often need to make changes to the search path in order to access the tables of each schema. This API
creates an independent connection to the database for each TripalDbxConnection instance which ensures the primary
Drupal connection remains unaffected by search path changes.

B) Table Prefixing in Queries:
Drupal has always had support for prefixing table names; however, this has been a simple string prepended to the
beginning of the table name. This is likely due to many database systems not supporting multiple schema within a
single database. In version 2 and 3, Tripal used the native Drupal prefixing to access the Chado database in a separate
schema. It did this by using a prefix of “chado.” which takes advantage of the PostgreSQL syntax for accessing a
specific schema (named “chado” in the previous example). In Tripal version 4, we’ve created the Tripal DBX API
which takes this one step further by extending the native PHP/Drupal PDO database layer to use cross schema focused
table prefixing. This allows module developers to access multiple chado and additional Tripal DBX managed schema
both through direct queries and using the object-oriented query builder.

The PHP/Drupal PDO query is very useful for building dynamic queries as it handles user provided parameters in a
very secure manner and can be very accessible for those who are less familar with PostgreSQL syntax. The following
example shows how the native Drupal query builder can be used with Chado through the Tripal DBX API:

// Open a Connection to the default Tripal DBX managed Chado schema.
$connection = \Drupal::service('tripal_chado.database');

// Start a select query on the Chado feature table and assign an alias of x.
$query = $connection->select('feature', 'x');

// Add a where condition that feature.is_obsolete is FALSE.
$query->condition('x.is_obsolete', 'f', '=');

// Select the name and residues columns/fields from the table.
$query->fields('x', ['name', 'residues']);

// And only show the first 10 records/entries.
(continues on next page)

70 Chapter 5. Extending Tripal

https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Database%21Connection.php/class/Connection/9.3.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Database%21Schema.php/class/Schema/9.3.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Database%21Driver%21pgsql%21Connection.php/class/Connection/9.3.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Database%21Driver%21pgsql%21Schema.php/class/Schema/9.3.x

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

$query->range(0, 10);

// Finally execute the query we generated against the database.
$result = $query->execute();

// And iterate through the returned results.
foreach ($result as $record) {
// Do something with the $record object here.
// e.g. echo $record->name;

}

The above example used a Chado implementation of the Tripal DBX API provided by the tripal_chado.database
service to generate a select query, execute it agains the database focusing on a specific non-Drupal schema and then
iterates through the results. It is the equivalent of the following SQL statement: SELECT x.name, x.residues FROM
chado.feature x WHERE x.is_obsolete = f LIMIT 10 if the default Chado schema is named chado.

Note: For more information on the Drupal query builder, See the Drupal.org documentation. There is full support for
all the documented Drupal functionality with Tripal DBX managed schema.

— Multiple Schema Support
Tripal DBX provides multiple database schema support through table prefixing. The first step is to set the schema
you are working on in your specific connection. For example, if you were working with two Chado schema (named
“chado1” and “chado2” in this example) in addition to the Drupal schema then you would use setSchemaName() to
specify your main schema and then addExtraSchema() to specify any additional ones.

$connection = \Drupal::service('tripal_chado.database');
$connection->setSchemaName('chado1');
$connection->addExtraSchema('chado2');

Note: The primary schema indicated using setSchemaName() can be decided in a number of ways depending on
your use case for multiple schema and the specific query you are executing. The rule of thumb is to make the primary
schema match the one “prepared” to work with Tripal (i.e. the schema used as a base for Tripal Entities).

Now that you have your connection set up indicating the schema you are interested in, you can use the query builder to
generate as many queries as you need within the current scope. For example, the following code will generate a query
returning chromosome features stored in a separate chado schema (i.e. chado2) and using the primary chado schema
(i.e. chado1) for organism + ontology information:

// Start a select query on the feature table in the chado2 schema.
// Note the schema is indicated by prefixing a "2:" on the table name.
$query = $connection->select('2:feature', 'f');

// Add a join to the organism + cvterm table in the chado1 schema.
// Note that no prefix is needed for the primary Tripal DBX managed schema.
$query->join('organism', 'o', 'o.organism_id = f.organism_id');
$query->join('cvterm', 'cvt', 'cvt.cvterm_id = f.type_id');

// Add a where clause ensuring only records associated with the Tripalus genus are␣
→˓returned.

(continues on next page)

5.3. Biological Data Storage 71

https://www.drupal.org/docs/8/api/database-api/dynamic-queries/introduction-to-dynamic-queries

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

$query->condition('o.genus', 'Tripalus', '=');

// Add a where clause ensuring only "chromosome" feature types are returned.
$query->condition('cvt.name', 'chromosome', '=');

// Select the feature feature_id, name + uniquename and the organism genus, species +␣
→˓common name.
$query->fields('f', ['feature_id', 'name', 'uniquename']);
$query->fields('o', ['genus', 'species', 'common_name']);

// Finally execute the query we generated against the database.
$result = $query->execute();

// And iterate through the returned results.
foreach ($result as $record) {
// Do something with the $record object here.
// e.g. echo $record->name;

}

Note: This API expects all table names to be wrapped in curly brackets with an integer indicating the schema the table
is in. For example, {1: feature} would indicate the feature table in the current Tripal DBX managed schema, {0:
system} would indicate the Drupal system table and additional numeric indices would be used for extra Tripal DBX
managed schema (i.e. {2: feature}).

Alternatively, if you have a specific query in mind and do not need the security or overhead of the query builder, then
you can use the Drupal query() method to execute it directly. The following example shows how you would execute
the equivalent query built by the query builder above:

// Set some variables or retrieve them from your users.
$type = 'chromosome';
$genus = 'Tripalus';

// The SQL statement to be executed.
// Note that we've used the {1:organism} and {2:feature} for the primary and extra␣
→˓schemas respectively.
// Also note that placeholders (i.e. :type) are used for user input.
$sql = 'SELECT f.feature_id, f.name, f.uniquename, o.genus, o.species, o.common_name

FROM {2:feature} f
LEFT JOIN {1:organism} o ON o.organism_id=f.organism_id
LEFT JOIN {1:cvterm} cvt ON cvt.cvterm_id=f.type_id
WHERE o.genus = :genus AND cvt.name = :type';

// Finally execute the query we generated against the database
// by providing the values for any placeholders.
$results = $connection->query($sql, [':genus' => $genus, ':type' => $type]);

// And iterate through the returned results.
foreach ($results as $record) {
// Do something with the $record object here.
// e.g. echo $record->name;

}

72 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

Warning: When using the query method to submit SQL statements directly, it is very important to be aware of
security and the source of any information. Variables should NEVER be embedded directly in the SQL and all
dynamic and/or user input should be handled using placeholders in the SQL statement and then provided when the
query is executed.

Note: The query method shown for multiple schema can also be used for single schema queries as an alternative to
the query builder. As indicated in the query builder, for a single schema the {tablename} can be used and the 1:
prefix omitted.

Tripal DBX Schema

Note: This class should not be instantiated directly but rather it should be accessed through a TripalDbxConnection
object using the schema() method. This is to avoid issues when the default Tripal DBX managed schema name is
changed in the TripalDbxConnection object which could lead to issues.

Warning: If you choose to instantiate a TripalDbxSchema object yourself, you are responsible to not change the
Tripal DBX managed schema name of the connection object used to instantiate this TripalDbxSchema.

This class provides a Tripal-specific implementation of the Drupal Schema abstract class. The Drupal PostgreSQL (and
other database driver) implementations of the base Drupal Schema class follow the assumption that there is a single
schema. As such the core Drupal implementations focus on managing tables within a single schema.

The TripalDBXSchema class extends that table-management functionality to also include schema-focused management
including creation, cloning, renaming, dropping and definition export. Additionally, it removes the assumption of a
single schema by allowing the default schema to be set based on a Tripal DBX connection.

5.3.2 GMOD Chado Schema Integration

The Tripal Chado module provides integration between Tripal and the GMOD Chado schema. This provides flexible,
default storage for many biological data types including genes, genetic markers, germplasm, as well as associated meta
data such as project and analysis details. More specifically:

Chado is a relational database schema that underlies many GMOD installations. It is capable of repre-
senting many of the general classes of data frequently encountered in modern biology such as sequence,
sequence comparisons, phenotypes, genotypes, ontologies, publications, and phylogeny. It has been de-
signed to handle complex representations of biological knowledge and should be considered one of the
most sophisticated relational schemas currently available in molecular biology. The price of this capabil-
ity is that the new user must spend some time becoming familiar with its fundamentals.

—GMOD Chado Documentation

Chado was selected for Tripal because it is open-source, it is maintained by the community in which anyone can provide
input, and use of Chado encourages common data storage between online biological sites which decreases duplication
of effort.

Chado is meant to be installed into a PostgreSQL database and is designed to house a variety of biological data. For
example, Tripal comes with a variety of content types. However, if you want to create new content types you must know
how that data will be stored in Chado. Additionally, use of the Bulk Loader (a tab-delimited data loader for custom

5.3. Biological Data Storage 73

https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Database!Schema.php/class/Schema/9.3.x
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Database!Driver!pgsql!Schema.php/class/Schema/9.3.x
https://chado.readthedocs.io/en/rtd/
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado

Tripal 4.x Documentation, Release 4.x.alpha.1

data formats) requires a good understanding of Chado. Finally, creating extensions to Tripal requires an understanding
of Chado to write SQL and or new Tripal fields. The following links provide training for Chado.

Resource Link
Chado Home Page http://gmod.org/wiki/Chado
Chado Tutorial http://gmod.org/wiki/GMOD_Online_Training_2014/Chado_Tutorial
Chado ReadtheDocs https://chado.readthedocs.io/en/rtd/
Chado Table List https://chado.readthedocs.io/en/rtd/_static/schemaspy_integration/index.html
Chado Best Practices http://gmod.org/wiki/Chado_Best_Practices
Chado GitHub https://github.com/GMOD/Chado

Chado Installation

When you install the Tripal Chado module you will be automatically prompted to install Chado. This creates a schema
within your Drupal database to house the Chado tables listed in the resources above. To install Chado manually navigate
to Structure > Tripal > Data Storage > Chado > Install Chado. Then just choose your version and run the associated
Tripal job.

If you need to install Chado programmatically, use the following service from within a fully bootstrapped Tripal site.

Listing 1: Installs Chado version 1.3 in a schema named ‘chado’.

$installer = \Drupal::service('tripal_chado.chadoInstaller');
$installer->setSchema('chado');
$success = $installer->install(1.3);

Alternatively, you can install chado via the command line using the following Drush command.

Listing 2: Installs Chado version 1.3 in a schema named ‘chado’ using
Drush.

drush trp-install-chado --schema-name='chado' --version=1.3

Tripal Vocabularies & Terms

Tripal Vocabularies and Terms are database agnostic and store their details in the Drupal database as controlled by the
Drupal Entity API. Tripal has implemented a TripalTermStorage Plugin to allow Tripal extension modules to provide
additional storage for Tripal Vocabularies, IDSpaces and Terms. The core Tripal Chado module has implemented this
plugin to ensure these Tripal entities are linked to their Chado equivalents.

The following describes the mapping between Tripal Entities and their Chado counterparts:

• Tripal Vocabularies (see TripalVocab class) = cv

– TripalVocab::namespace = cv.name

– TripalVocab::name = cv.definition

– TripalVocab::url = db.url

• Tripal Vocabulary IDSpaces (see TripalVocabSpace class) = db

– TripalVocabSpace::name = db.name

– TripalVocabSpace::description = db.description

74 Chapter 5. Extending Tripal

http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Chado
http://gmod.org/wiki/GMOD_Online_Training_2014/Chado_Tutorial
https://chado.readthedocs.io/en/rtd/
https://chado.readthedocs.io/en/rtd/_static/schemaspy_integration/index.html
http://gmod.org/wiki/Chado_Best_Practices
https://github.com/GMOD/Chado

Tripal 4.x Documentation, Release 4.x.alpha.1

– TripalVocabSpace::urlprefix = db.urlprefix

• Tripal Terms (see TripalTerm class) = cvterm and dbxref

– TripalTerm::name = cvterm.name

– TripalTerm::definition = cvterm.definition

– TripalTerm::accession = dbxref.accession

For information on this mapping on a per entity basis, the chado details have been added to the Tripal entities. The
following examples show how to access them.

// First, retrieve the Tripal Vocabulary object.
$tripalvocab = \Drupal::service('tripal.tripalVocab.manager')->getVocabularies([

'namespace' => 'sequence',
]);

// Now access the cv.cv_id from that object.
$cv_id = $tripalvocab->chado_record_id;

// You can also access the chado record directly...
$cv = $tripalvocab->chado_record;

// The same pattern holds true for IDspaces and Terms.
$db_id = $tripalIDSpace->chado_record_id;
$db = $tripalIDSpace->chado_record;
$cvterm_id = $tripalTerm->chado_record_id;
$cvterm = $tripalTerm->chado_record;

5.3.3 Bulk Schema Install for PostgreSQL

Tripal provides a service to bulk import SQL files into a PostgreSQL database. The following code block shows how
this service can be used to create a fictional database schema and populate it within your Drupal/Tripal database. It’s
recommended to use a schema within your Drupal/Tripal database to ensure you can easily join between your biological
and application data. That said, this is not a requirement as Tripal can support data from outside sources.

$schema_name = 'biodb'; // This is a fictional example schema name.
// First initialize the Tripal Services.
$service = \Drupal::service('tripal.bulkPgSchemaInstaller');
// Next Create the schema.
$success = $service->createSchema($schema_name);
// And if the schema exists...
if ($service->checkExists($schema_name)) {

// Then populate the schema in bulk using an SQL file.
$sql_file = \Drupal::service('extension.list.module')->getPath('tripal') . '/

→˓tests/fixtures/smallTestSchema.sql';
$success = $service->applySQL($sql_file, $schema_name, TRUE);

}

5.3. Biological Data Storage 75

Tripal 4.x Documentation, Release 4.x.alpha.1

5.3.4 Custom Tables in Chado

The Chado database provides a variety of tables for storing biological and ancillary data, however there may be situa-
tions where you need to make customizations to Chado to hold new types of data or to link existing data. Rather than
make Changes to existing Chado tables, it is recommended to develop custom tables. Modules can provide such tables
during installation and provide the necessary tools to interact with the data in the custom table (e.g., new data loaders,
content types, materialized views, and/or fields). This section describes how to programmatically create and manage
Custom tables in Chado.

Warning: You should avoid making any changes to existing Chado tables as it could make upgrades to future
releases of Chado more difficult and could break functionality in Tripal that expects Chado tabes to be a certain
way. Instead, use custom tables!

To support custom tables in Chado, Tripal provides a service that has management functions for working with custom
tables in general, and provides the ChadoCustomTable object which has support for working with individual tables.
Each table can be identified using its name and a unique ID that is automatically assigned to the Table.

Note: For a hands-on example to programmatically create and manage custom tables see How to use Custom Tables
in Chado.

5.3.5 Creating a Chado Data Importer

Often we want to provide a user interface by which a site developer can easily import data into Chado. Examples
of existing loaders compatible with Tripal include the FASTA and GFF3 loaders that come with the Tripal Genome
module. These loaders allow users to import data into Chado that are in FASTA or GFF3 format.

If you would like to create a new data importer for Chado you will need to create your own TripalImporter plu-
gin. The Tripal importers use the Drupal Plugin API. The plugin infrastructure of Drupal allows a module to pro-
vide new functionality that builds off of a common interface. For importing data this interface is provided by the
TripalImporterInterface class. The TripalImporter plugin provides many conveniences. For example, it pro-
vides an input form that automatically handles files uploads, it performs job submission, logging, and provides progress
updates during execution. Adding a TripalImporter plugin to your module will allow anyone who installs your module
to also use your new loader!

Here, we will show how to create a TripalImporter plugin by building a simple importer called the ExampleIm-
porter. This importer reads a comma-separated file containing genomic features and their properties (a fictional “Test
Format” file). The loader will split each line into feature and property values, and then insert each property into the
featureprop table of Chado using a controlled vocabulary term (supplied by the user) as the type_id for the property.

Note: Prior to starting your data loader you should plan how the data will be imported into Chado. Chado is a
flexible database schema and it may be challenging at times to decide in to which tables data should be placed. It is
recommended to reach out to the Chado community to solicit advice. Doing so will allow you to share your loader will
other Tripal users more easily!

76 Chapter 5. Extending Tripal

https://en.wikipedia.org/wiki/FASTA_format
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://www.drupal.org/docs/drupal-apis/plugin-api/plugin-api-overview

Tripal 4.x Documentation, Release 4.x.alpha.1

Step 1: Create Your Module

To create your an importer, you first need to have a Drupal module in which the loader will be provided. If you do
not know how to create a module, see the section titled Custom Module Development for further direction. For this
document we will describe creation of an importer in a fake module named tripal_example_importer.

Step 2: Create the Importer Class File

To define a new TripalImporter plugin, you should first create the directory src/Plugin/TripalImporter/ in
your module. For the example here, we will create a new plugin named ExampleImporter. We must name the file
the same as the class (with a .php extension) and place the file in the src/Plugin/TripalImporter/ directory
we just created. For example: tripal_example_importer\src\Plugin\TripalImporter\ExampleImporter.
inc. Placing the importer class file in the src/Plugin/TripalImporter directory is all you need for Tripal to find
it. Tripal will automatically place a link for your importer on the Drupal site at admin > Tripal > Data Loaders.

Step 3: Stub the Class File

In the Class file created in the previous step we will write our TripalImporter plugin. First, we must set the namespace
for this class. It should look similar to the path where the file is stored (but without the src directory):

<?php
namespace Drupal\tripal_example_importer\Plugin\TripalImporter;

Next, an importer that is meant to load data into Chado should extend the ChadoImporterBase class.

<?php
namespace Drupal\tripal_example_importer\Plugin\TripalImporter;

use Drupal\tripal_chado\TripalImporter\ChadoImporterBase;

class ExampleImporter extends ChadoImporterBase {

All TripalImporter plugins uss the TripalImporterInterface which requires that several unctions are included
in your plugin. These functions are:

• form()

• formSubmit()

• formValidate()

• run()

• postRun()

We will discuss each fucntion later but for now, we will create “stubs” for each of these functions in our class. For our
example empty class it should look like the following:

<?php
namespace Drupal\tripal_example_importer\Plugin\TripalImporter;

use Drupal\tripal_chado\TripalImporter\ChadoImporterBase;

class ExampleImporter extends ChadoImporterBase {

(continues on next page)

5.3. Biological Data Storage 77

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

/**
* @see ChadoImporterBase::form()
*/
public function form($form, &$form_state) {

// Always call the parent form.
$form = parent::form($form, $form_state);

return $form;
}

/**
* @see ChadoImporterBase::formSubmit()
*/
public function formSubmit($form, &$form_state) {

}

/**
* @see ChadoImporterBase::formValidate()
*/

public function formValidate($form, &$form_state) {

}

/**
* @see ChadoImporterBase::run()
*/
public function run() {

}

/**
* @see ChadoImporterBase::postRun()
*/
public function postRun() {

}
}

Notice in the form() function there is a call to the parent::form():

/**
* @see ChadoImporterBase::form()
*/
public function form($form, &$form_state) {

// Always call the parent form.
$form = parent::form($form, $form_state);

(continues on next page)

78 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

return $form;
}

Without calling the parent::form() function your importer’s form may not properly work. This is required.

Step 4: Add Class Annotations

All Drupal plugins require an Annotation section that appears as a PHP comment just above the Class definition.
The annotation section provides settings that the TripalImporter plugin requires. As a quick example here is the
Annotation section for the GFF3 importer. The GFF3 importer is provided by the Tripal Genome module and imports
features defined in a GFF3 file into Chado.

/**
* GFF3 Importer implementation of the ChadoImporterBase.
*
* @TripalImporter(
* id = "chado_fasta_loader",
* label = @Translation("Chado FASTA File Loader"),
* description = @Translation("Import a FASTA file into Chado"),
* file_types = {"fasta","txt","fa","aa","pep","nuc","faa","fna"},
* upload_description = @Translation("Please provide a plain text file following the
→˓FASTA format␣
→˓specification."),
* upload_title = @Translation("FASTA File"),
* use_analysis = True,
* require_analysis = True,
* use_button = True,
* button_text = @Translation("Import FASTA file"),
* file_upload = True,
* file_remote = True,
* file_local = True,
* file_required = True,
* submit_disabled = False
*)
*/
class GFF3Importer extends ChadoImporterBase {

In the code above, the annotation section consists of multiple settings in key/value pairs. The meaning of each settings
is as follows:

• id: A unique machine readable plugin ID for the loader. It must only contain alphanumeric characters and the
underscore. It should be lowercase.

• label: the human readable name (or label) for this importer. It is wrapped in a @Translation() function
which will allow Drupal to provide translations for it. This label is shown to the user in the list of available data
importers.

• description: A short description for the site user that briefly indicates what this loader is for. It too is wrapped
in a @Translation() function. This description is shown to the user for the loader.

• file_types: A list of file extensions that the importer will allow to be uploaded. If a file does not have an
extension in the list then it cannot be uploaded by the importer.

• upload_title: Provides the title that should appear above the upload button. This helps the user understand
what type of file is expected.

5.3. Biological Data Storage 79

https://www.drupal.org/docs/drupal-apis/plugin-api/annotations-based-plugins

Tripal 4.x Documentation, Release 4.x.alpha.1

• upload_description: Provides the information for the user related to the file upload. You can provide addi-
tional instructions or help text.

• use_analysis: To support FAIR data principles, we should ensure that provenance of data is available. Chado
provides the analysis table to link data to an analysis. The analysis record provides the details for how the data
in the file was created or obtained. Set this to False if the loader should not require an analysis when loading. if
use_analysis is set to True then the user will be presented with a form element to select an analysis and this
analysis will be available to you for your importer.

• require_analysis: If the use_analysis value is set then this value indicates if the analysis should be re-
quired. If True it will be required, otherwise it will be optional.

• button_text: The text that should appear on the button at the bottom of the importer form.

• use_button: Indicates whether a submit button should be present. This should only be False in situations
were you need multiple buttons or greater control over the submit process (e.g., multi-page forms).

• submit_disabled: Indicates whether the submit button should be disabled when the form appears. The form
can then be programmatically enabled via AJAX once certain criteria is set.

• file_upload: Indicates if the loader should provide a form element for uploading a file.

• file_remote: Indicates if the loader should provide a form element for specifying the URL of a remote file.

• file_local: Indicates if the loader should provide a form element for specifying the path available to the web
server where the file is located.

• file_required: Indicates if the file must be provided.

For our ExampleImporter class we will set the annotations accordingly:

/**
* TST Importer implementation of the ChadoImporterBase.
*
* @TripalImporter(
* id = "tripal_tst_loader",
* label = @Translation("Example TST File Importer"),
* description = @Translation("Loads TST files"),
* file_types = {"txt", "tst", "csv"},
* upload_description = @Translation("TST is a fictional format. Its a 2-column,␣

→˓CSV file. The columns should be of the form featurename, and text"),
* upload_title = @Translation("TST File"),
* use_analysis = True,
* require_analysis = True,
* use_button = True,
* button_text = @Translation("Import TST file"),
* file_upload = True,
* file_remote = True,
* file_local = True,
* file_required = True,
* submit_disabled = False
*)
*/
class ExampleImporter extends ChadoImporterBase {

Warning: You must use double quotes when specifying strings in the Annotations.

80 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

Step 5: Check Availability

Now that we have created the plugin and set it’s annotations it should appear in the list of Tripal Importers at admin >
Tripal > Data Loaders after we clear the Drupal cache (drush cr).

Note: If your importer does not show in the list of data loaders, check the Drupal recent logs at admin > Manage >
Reports > Recent log messages .

Using the annotation settings we provided, the importer form will automatically provide a File Upload field set, and an
Analysis selector. The File Upload section lets users choose to upload a file, provide a server path to a file already on
the web server or a specify a remote path for files located via a downloadable link on the web. The Analysis selector
is important because it allows the user to specify an analysis that describes how the data file was created. It will look
like the following screenshot:

5.3. Biological Data Storage 81

Tripal 4.x Documentation, Release 4.x.alpha.1

Step 6: Customize the Form

Most likely, you will want to add elements the importer form. For our example TST file importer we want to split the
file to retrieve feature and their properties, and then insert properties into the featureprop table of Chado. That table
requires a controlled vocabulary term ID for the type_id column of the table. Therefore, we want to customize the
importer form to request a controlled vocabulary term. To customize the form we can use three functions:

• form(): Allows you to add additional form elements to the form.

• formValidate(): Provides a mechanism by which you can validate the form elements you added.

• formSubmit(): Allows you to perform some preprocessing prior to submission of the form. Typically this
function does not need to be implemented–only if you want to do preprocessing before submission.

Note: If you are not familiar with form creation in Drupal you may want to find a Drupal reference book that provides
step-by-step instructions. Additionally, you can explore the API documentation for form construction for Drupal 10.

82 Chapter 5. Extending Tripal

https://www.drupal.org/docs/drupal-apis/form-api

Tripal 4.x Documentation, Release 4.x.alpha.1

The form() function

We can use the form() function to add the element to request the property CV term. To help, Tripal provides a handy
service for searching for a controlled vocabulary term, we can use this as part of a text box with an autocomplete. The
following code shows the addition of a new textfield form element with a #autocomplete_route_name setting
that tells the form to use Tripal’s CV search service to support autocompletion as the user types.

public function form($form, &$form_state) {

// Always call the parent form.
$form = parent::form($form, $form_state);

// Add an element to the form to allow a user to pick
// a controlled vocabulary term.
$form['pick_cvterm'] = [
'#title' => t('Property Type'),
'#type' => 'textfield',
'#required' => TRUE,
'#description' => t("Specify the controlled vocabulary term for "
. "properties that will be added to genomic features in the input file."),

'#autocomplete_route_name' => 'tripal_chado.cvterm_autocomplete',
'#autocomplete_route_parameters' => ['count' => 5, 'cv_id' => 0],

];

return $form;
}

The #autocomplete_route_parameters setting takes an array of two arguments: count and cv_id. The count
argument specifies the maximum number of matching CV terms that will be shown as the user types. The cv_id in
the example is set to zero, indicating that there are no restrictions on which vocabulary the terms can come from. If
you wanted to restrict the user to only selecting terms from a specific vocabulary then you would set the cv_id to the
vocabulary ID from Chado.

Reloading the importer, the form now has an autocomplete text box for selecting a CV term.

5.3. Biological Data Storage 83

Tripal 4.x Documentation, Release 4.x.alpha.1

The formValidate() function

The formValidate() function is responsible for verifying that the user supplied values are valid. This func-
tion receives two arguments: $form and $form_validate. The $form object contains the fully built form. The
$form_validate argument contains the object that represents the user submitted state of the form. To warn the user
of inappropriate values, the $form_state->setErrorByName() function is used. It provides an error message, high-
lights in red the widget containing the bad value, and prevents the form from being submitted–allowing the user to make
corrections. In our example code, we will check that the user selected a CV term from the pick_cvterm widget.

public function formValidate($form, &$form_state) {

// Get the values submitted by the user.
$form_state_values = $form_state->getValues();

// The pick_cvterm element is required and Drupal will handle that
// check for us, so we only need to make sure the user let the user selected
// a term from the autocomplete with the accession in parentheses.
$term = $form_state_values['pick_cvterm'];

if (!preg_match('/\(.+?:.+?\)/', $term)) {
$form_state->setErrorByName('pick_cvterm',
t('Please choose a property type from the list that appears while typing. '
. 'It must include the controlled vocabulary term accession'));

}
}

The implementation above gets the pick_cvterm element from the $form_state object. The PHP preg_match
function uses a regular expression to make sure the term selected by the user has the format provided by the autocomplete
(e.g., comment (rdfs:comment)). It checks to make sure the term accession is present in parentheses. For your importer,
use this function to check as many form elements as you add to the importer.

The formSubmit() function

If you need to perform any steps prior to running the importer you can use the formSubmit() function. Suppose we
wanted to add to our form the ability for a user to add new terms that do not already exist in the database. We would
create the form elements in the form() function, make sure we have validation checks in the formValidate() and
then we could insert the new term into the database prior to job submission in the formSubmit() function. Most likely
you will not need to use this function. For most existing importers provided by Tripal this function is not used.

Step 7: Write Importing Code

When an importer form is submitted and passes all validation checks, a job is automatically added to the Tripal Jobs
system. The TripalImporter parent class does this for us! The Tripal Jobs system is meant to allow long-running
jobs to execute behind-the-scenes on a regular time schedule. As jobs are added they are executed in order. Therefore,
if a user submits a job using the importer’s form then the Tripal Jobs system will automatically run the job the next
time it is scheduled to run or it can be launched manually by the site administrator.

When the Tripal Job system executes an importer job it will call three different functions:

• preRun(): contains code to be executed prior to the the run() function.

• run(): contains the code that performs the import of the file.

• postRun(): contains code to be executed after executiong of the ``run()` function.

84 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

These functions were added to our class as “stubs” in Step 3 above and now we discuss each of these.

The preRun() function

The preRun() function is called automatically by Tripal and should contain code that must be executed prior to running
hte importer. This function provide any setup that is needed prior to importing the file. In the case of our example
importer, we will not need to use the preRun() function so it will remain empty.

The run() function

The run() function is called automatically when Tripal runs the importer. For our ExampleImporter, the run function
should read and parse the input file and load the data into Chado. The first step, is to retrieve the user provided values
from the form and the file details. The inline comments in the code below provide instructions for retrieving these
details.

public function run() {

// All values provided by the user in the Importer's form widgets are
// made available to us here by the Class' arguments member variable.
$arguments = $this->arguments['run_args'];

// The path to the uploaded file is always made available using the
// 'files' argument. The importer can support multiple files, therefore
// this is an array of files, where each has a 'file_path' key specifying
// where the file is located on the server.
$file_path = $this->arguments['files'][0]['file_path'];

// The analysis that the data being imported is associated with is always
// provided as an argument.
$analysis_id = $arguments['analysis_id'];

// Convert the cvterm text provided by the user submitted form
// to the actual cvterm ID from chado.
$cvterm = $arguments['pick_cvterm'];
$cv_autocomplete = new ChadoCVTermAutocompleteController();
$cvterm_id = $cv_autocomplete->getCVtermId($cvterm);

// Now that we have our file path, analysis_id and CV term we can load
// the file. We'll do so by creating a new function in our class
// called "loadMyFile" and pass these arguments to it.
$this->loadMyFile($analysis_id, $file_path, $cvterm_id);

}

In the example code above the loadMyFile() function is a function we add to our importer class that completes the
loading of the file. We do not show the code of that function here, but it will be responsible for reading in the file
provided by the $file_path variable and import the feature properties into Chado.

5.3. Biological Data Storage 85

Tripal 4.x Documentation, Release 4.x.alpha.1

Logging

During execution of our importer it is often useful to inform the user of progress, status and issues encountered. All
TripalImporter plugins have several built-in objects and functions that support logging and reporting of progress. For
logging, each importer has access to a TripalLogger accessible as $this->logger which uses the Drupal Logging
API. There are several functions that you can use with the logger than can report errors, warnings, notices or debugging
information. A quick list of these are:

• $this->logger->emergency($message)

• $this->logger->alert($message)

• $this->logger->critical($message)

• $this->logger->error($message)

• $this->logger->warning($message)

• $this->logger->notice($message)

• $this->logger->info($message)

• $this->logger->debug($message)

For each of the functions above, the $message argument should contain the text that is reported. The following is an
example code from the GFF3 loader where logging is used to report progress of each step:

$this->logger->notice("Step 1 of 27: Caching GFF3 file...");

Warning: Do not use print or print_r statements as a way to inform the user of warnings, errors or progress.
These will not be logged and may interfere with functional testing.

Throwing errors

The TripalImporter plugins can throw errors if needed. Tripal will catch the error, perform appropriate logging and
recover gracefully. An example of throwing an error from the GFF3 loader:

throw new \Exception(t('Cannot find landmark feature type \'%landmark_type\'.',
['%landmark_type' => $this->default_landmark_type]));

After an error is caught by Tripal, all database changes will be rolled back and any changes made to the database during
the process of running the importer will no longer exist.

Reporting Progress

For progress reporting, TripalImporter plugins can utilize two different functions:

• $this->setTotalItems(): Indicates the total number of items (or steps) that must be processed for the im-
porter to complete.

• $this->setItemsHandled(): Reports the total number of items that have been handled.

An item is an arbitrary term indicating some countable “units” that will be processed by our importer. This can be
lines in a file, bytes in a file, or steps that an importer performs. To initialize the progress, first set the number of items
handled to zero:

86 Chapter 5. Extending Tripal

https://www.drupal.org/docs/8/api/logging-api/overview
https://www.drupal.org/docs/8/api/logging-api/overview

Tripal 4.x Documentation, Release 4.x.alpha.1

$this->setItemsHandled(0);

Next indicate how many items you plan to process:

$this->setTotalItems($num_items);

Then, as you process each item in the loader you can rerun the setItemsHandled() function and update the number
of items that have been handled.

Step 8: Write Functional Tests

Functional testing is a critically important component of any software project. You should always strive to write tests
for your software to ensure that the software performs as expected and bugs are less likely to enter the code. Drupal
provides automated testing by integrated the phpunit testing framework. We can create functional tests by utilizing
this infrastructure provided by Drupal.

Create the Testing Class

Tests for TripalImporters are Class files that should be placed in the tests/src/Kernel/Plugin/TripalImporter
folder of your module and the file should have the same name as the importer class with a “Test” suffix. For our
example importer it would be found in this location tripal_example_importer\tests\src\Kernel\Plugin\
TripalImporter\ExampleImporterTest.inc.

The testing class should have the same name as the file and should extend the ChadoTestKernelBase. The following
example code shows the empty starter class for our ExampleImporterTest class:

namespace Drupal\Tests\tripal_chado\Kernel\Plugin\TripalImporter;

use Drupal\Core\Url;
use Drupal\Tests\tripal_chado\Kernel\ChadoTestKernelBase;

/**
* Tests the functionality of the ExampleImporter Importer.
*
*/
class ExampleImporterTest extends ChadoTestKernelBase {

/**
* {@inheritdoc}
*/
protected function setUp(): void {
parent::setUp();

}

/**
* Tests the importer form.
*/
public function testImporterForm() {

}

(continues on next page)

5.3. Biological Data Storage 87

https://www.drupal.org/docs/develop/automated-testing

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

/**
* Tests the run function.
*/
public function testRun() {
}

}

During automated testing, a new temporary instance of Drupal is created. Drupal will run each test class and for each
test class, the setUp() function will be run first. Afterwards, all of the functions that have the prefix test will be
executed.

The setUp() function

The setup() function allows you to prepare the test Drupal site so that it is ready for the tests that follow. The following
code provides a common set of steps that all TripalImporters should use to setup the class for testing:

/**
* {@inheritdoc}
*/
protected function setUp(): void {

// Always call the parent::setUp function.
parent::setUp();

// Ensure we see all logging in tests.
\Drupal::state()->set('is_a_test_environment', TRUE);

// Open a connection to Chado. This will ensure we have a properly
// prepared Chado database.

$this->connection = $this->getTestSchema(ChadoTestKernelBase::PREPARE_TEST_
→˓CHADO);

// Ensure we can access file_managed related functionality from Drupal.
// ... users need access to system.action config?
$this->installConfig('system');
// ... managed files are associated with a user.
$this->installEntitySchema('user');
// ... Finally the file module + tables itself.
$this->installEntitySchema('file');
$this->installSchema('file', ['file_usage']);

}

In the setUp() function above, we first allow the parent class to perform its setup functions. Then we ensure the logger
messages are set to be captured for testing, Chado is property initialized and the test supports managed files.

88 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

The testImporterForm() function

For our first, test, we will write code to ensure that the user interface form is working as intended. Here we will test
that all of the form elements that out importer added to the form are working as expected. You do not need to write
tests for the file uploader nor for the analysis selection element. The testing of these elements will happen by the parent
classes. Here we only need to test our additions to the form.

To perform tests, the ChadoTestKernelBase class automatically provides a set of PHPUnit assertion functions. For
example, to test a boolean variable is True you would use the assertTrue() function in the following way:

$this->assertTrue($my_boolean_var, "The variable is not a boolean.");

Note that the assertion functions are available in your test class a member function (via $this->assertTrue()).
All assertion functions are available in this way. For our example importer we only need to test the property cvterm
element. T

For our example importer, the following code shows how we can test the form:

/**
* Tests the importer form.
*/
public function testImporterForm() {

// Store the plugin ID and label for easy access later.
$plugin_id = 'tripal_tst_loader';

$importer_label = 'Loads TST files';

// Build the form using the Drupal form builder.
$form = \Drupal::formBuilder()->getForm('Drupal\tripal\Form\TripalImporterForm',

→˓$plugin_id);

// Ensure we are able to build the form.
$this->assertIsArray($form,
"We expect the form builder to return a form but it did not.");

$this->assertEquals('tripal_admin_form_tripalimporter', $form['#form_id'],
"We did not get the form id we expected.");

// Now that we have provided a plugin_id, we expect it to have a title matching our␣
→˓importer label.
$this->assertArrayHasKey('#title', $form,
"The form should have a title set.");

$this->assertEquals($importer_label, $form['#title'],
"The title should match the label annotated for our plugin.");

// The plugin_id stored in a value form element.
$this->assertArrayHasKey('importer_plugin_id', $form,
"The form should have an element to save the plugin_id.");

$this->assertEquals($plugin_id, $form['importer_plugin_id']['#value'],
"The importer_plugin_id[#value] should be set to our plugin_id.");

// The form has a submit button.
$this->assertArrayHasKey('button', $form,
"The form should have a submit button since we indicated a specific importer.");

(continues on next page)

5.3. Biological Data Storage 89

https://docs.phpunit.de/en/9.6/assertions.html
https://docs.phpunit.de/en/9.6/assertions.html#asserttrue

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

// Make sure the importer requires an analysis.
$this->assertArrayHasKey('analysis_id', $form,
"The from should not include analysis element, yet one exists.");

// We should also have our importer-specific form elements added to the form!
$this->assertArrayHasKey('pick_cvterm', $form,
"The form should include an the 'pick_cvterm' form element.");

}

Error: The documentation about testing is not yet complete. More information is needed to describe how to test
form submission, the run(), preRun() and postRun()

5.4 Custom Module Development

Tripal is an extension of the Drupal Content Management System. Drupal 10 is written in PHP, is very object oriented
and uses technology standards such as Composer, Symphony, YAML and Twig. This documentation is meant to act
as an orientation to Tripal development in Drupal 10 and will link to additional Drupal-specific tutorials for specific
topics.

5.4.1 Module File Structure

All Tripal extension modules require a module folder and a .info.yml file. With just these two items the module will
display in Drupal 10’s Extend administration page or can be activated directly with drush.

Choosing a module name

Choose a module machine name that is descriptive, short and unique. It is always a good idea to check out the Tripal
Extensions module list to ensure you module name has not already been used. You module machine name must also
meet the following rules:

• It must start with a letter.

• It must contain only lower-case letters and underscores.

• It must not contain any spaces.

• It must be unique. Your module should not have the same short name as any other module, theme, or installation
profile you will be using on the site.

• It should not be any of the reserved terms : src, lib, vendor, assets, css, files, images, js, misc, templates, includes,
fixtures, drupal.

It is also a good idea to ensure your module name encompasses the full functionality you would like to develop. For
example, while your current goal may be importing a specific file format, you are likely to want to develop customized
display through Tripal fields in the future. As such, you would want to stay away from my_file_format_importer
and go with something more general like my_data_type. We also recommend you prefix your module name with a
short identifier for you lab. This will ensure your module name is unique.

90 Chapter 5. Extending Tripal

https://tripal.info
https://www.drupal.org/
https://getcomposer.org/
https://symfony.com/
https://yaml.org/
https://twig.symfony.com/
https://tripal.readthedocs.io/en/latest/extensions.html
https://tripal.readthedocs.io/en/latest/extensions.html

Tripal 4.x Documentation, Release 4.x.alpha.1

Prepare a module skeleton

Start by creating a folder for your module in the modules directory of your Tripal site. This folder should use the
machine name you choose above and includes all the files describing the functionality of your module. Read more
regarding this containing folder

Next we let Drupal know about our module by describing it in an .info.yml file. The structure of this file is quite
simple but descriptive:

name: Hello World Module
description: Creates a page showing "Hello World".
package: Custom

type: module
core: 10.x

dependencies:
- tripal

Not only does this file let Drupal know about your module so you can enable it in your Tripal site but it also provides
information to the site administrator. There are additional keys for this file; the ones above are the most common. Read
more on the Drupal info.yml file

Once you have added an .info.yml file, you can navigate to your Drupal site in the browser, go to “Extend” in the
administration toolbar at the top. Your module will now appear in this list and checking the checkbox enables it! If this
doesn’t happen, read some great debugging tips here.

Directory Structure

This section will explain the typical directory structure of a Tripal 4 extension module. These directories follow Drupal
standards and the structure is often necessary for your classes to be automatically discovered.

As mentioned when preparing a module skeleton above, your entire module will be contained within a directory named
using the machine name of your module. Within that base directory are the following:

• config: contains files defining default configuration including variables and schema.

• src: contains the bulk of your module including controllers, forms, fields and blocks.

• templates: contains your Twig template files for modifying display of fields and pages.

• tests: contains your automated phpunit tests.

The sub-directories and files within are described in the following image:

5.4. Custom Module Development 91

https://www.drupal.org/docs/develop/creating-modules/naming-and-placing-your-drupal-module#s-create-a-folder-for-your-module
https://www.drupal.org/docs/develop/creating-modules/naming-and-placing-your-drupal-module#s-create-a-folder-for-your-module
https://www.drupal.org/node/2000204
https://www.drupal.org/node/2000204
https://www.drupal.org/docs/develop/creating-modules/let-drupal-know-about-your-module-with-an-infoyml-file#debugging

Tripal 4.x Documentation, Release 4.x.alpha.1

92 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

5.4.2 Menus, Links and URLs

Defining URL paths and the programmatic flow to a rendered webpage is known as Routing. In Drupal 8, routing is
handled by the Symfony Routing component which replaces hook_menu in Drupal 7. In your custom module, you will
define all static routes in the .routing.yml file using the YAML format. The following is an example of a route:

hello_world.hello:
path: '/hello/{{name}}'
defaults:
_controller:

'\Drupal\hello_world\Controller\HelloWorldController::helloWorld'
_title: 'Our first route'

requirements:
_permission: 'access content'

This route defines that a user navigating to https://yourdrupalsite/hello will render the content defined by the
helloWorld method in the HelloWorldController class. The defaults key provides parameters to the handlers
responsible for returning your content to the user. In this case, that includes the title of the page and where to get the
content from. Finally, the requirements key defines conditions which must be met for the content to display; for
example, permissions that the current user must have.

The other key thing to note about the above route is the {{name}} placeholder used in the path. By surround-
ing a variable name in curly brackets you can pass parameters to your controller. The important thing to note
is that the name of your path variable must match exactly and exist in your specified controller method (i.e.
HelloWorldController::helloWorld($name)).

Additional Resources:
• Official Drupal Routing documentation. Tripal uses the default Drupal routing system with no modifica-

tions.

• Official Drupal Converting hook_menu to Drupal 8 Routing

• BeFused Tutorial: “Introduction to creating menu links in a custom Drupal 8 module”

• Appnovation Tutorial: “Drupal 8 Routing: Decoupling hook_menu”

Menu Items

The menu system has an extensive user interface (UI) for defining menus and the links within them. This is great
for management for your Tripal site as it allows you to dynamically add menu items requested by your community.
However, when developing custom modules, you will also want to define these menu items programmatically to save
time and provide navigation to other sites using your module. To do this you will want to use the .links.menu.yml
file which lives in the base directory of your module. It looks like this:

hello_world.hello:
title: 'Hello'
description: 'Get your dynamic salutation.'
route_name: hello_world.hello
menu_name: main
weight: 0

This defines a typically menu link; in this case, a link labelled “Hello” will appear at the top level of the main naviga-
tional menu. The machine name of the menu can be found in the path when adding links through the UI. In addition to
the basic menu link demonstrated above there are also:

• local tasks: tabs at the top of the page linking to different sub-pages.

5.4. Custom Module Development 93

http://symfony.com/doc/current/components/routing.html
https://yaml.org/
https://www.drupal.org/docs/8/api/routing-system
https://www.drupal.org/docs/8/converting-drupal-7-modules-to-drupal-8/d7-to-d8-upgrade-tutorial-convert-hook_menu-and-hook
https://befused.com/drupal/menu-links-custom-module-d8
https://www.appnovation.com/blog/drupal-8-routing-decoupling-hookmenu

Tripal 4.x Documentation, Release 4.x.alpha.1

• local action: link at the top of a page (i.e. “+ Add Content” on admin/content) which allows the admin to
complete an action.

• contextual links: similar to tabs but appear near the title (e.g. view, edit on a content page). These are different
from tabs because they are dynamic and often require a parameters (e.g. entity id).

For Tripal Extension modules, it is good practice to have the main configuration page for your module available on
Tripal’s own Extensions menu page. To accomplish this, the main configuration page for your module should have an
entry with tripal.extension as the parent. For example:

hello_world.config:
route_name: hello_world.config
title: 'Hello World Config'
description: 'Configure how to greet the world'
parent: tripal.extension
weight: 0

Check out the additional resources for how to define these other types of menu items and for more information in
general.

Additional Resources
• Official Drupal 8 Menu API docs

• What is a menu?

• Official Drupal docs: Add a menu link

• BeFused Tutorial: Introduction to creating menu links in a custom Drupal 8 module

Links

When programmatically creating page content, you will often want to add links. To add internal links, use the route
name as shown below. This ensures that your link doesn’t break if the route is changed.

use Drupal\Core\Link;
$link = Link::createFromRoute('This is a link', 'entity.node.canonical', ['node' => 1]);

To generate a link to an external resource, you can use the following:

$link = Link::fromTextAndUrl('This is a link',
Url::fromUri('http://www.google.com'));

For all the different ways to generate URLs see the following resources -the tutorial is particularly complete.

Additional Resources
• Agaric Tutorial: Creating Links in Code for Drupal 8

• Official Drupal docs: How to upgrade links from Drupal 7

94 Chapter 5. Extending Tripal

https://www.drupal.org/docs/8/api/menu-api
https://www.drupal.org/docs/user_guide/en/menu-concept.html
https://www.drupal.org/docs/8/creating-custom-modules/add-a-menu-link
https://befused.com/drupal/menu-links-custom-module-d8
https://agaric.coop/blog/creating-links-code-drupal-8
https://www.drupal.org/node/2346779

Tripal 4.x Documentation, Release 4.x.alpha.1

5.4.3 Pages and Page Types

In Drupal terminology, each Tripal content page is an content entity (e.g. MyFavGene-1) and each Tripal Content Type
(e.g. Genes) is a configuration entity. Tripal core has already done the work of defining these to Drupal and creates a
number of common content types on install.

A content entity (or more commonly, entity) is an item of content data, which can consist of text, HTML
markup, images, attached files, and other data that is intended to be displayed to site visitors. Content
entities can be defined by the core software or by modules.

Content entities are grouped into entity types, which have different purposes and are displayed in very
different ways on the site. Most entity types are also divided into entity sub-types, which are divisions
within an entity type to allow for smaller variations in how the entities are used and displayed.

Excerpt from Official Drupal Docs: What are Content Entities and Fields

This architecture allows you to categorize your data by type (e.g. gene versus germplasm variety) and provide special-
ized displays specific to each type.

Both Tripal content and Tripal content types can be created through the administrative user interface or programmat-
ically. Tripal content entities and entity types have extended Drupal’s default content entities to provide functionality
specific to biological data. As such we recommend you create custom Tripal Content types rather then using the Drupal
API directly.

Additional Resources:
• Official Drupal Docs: What are Content Entities and Fields

• Official Drupal Docs: Introduction to Entity API in Drupal 8

• Official Drupal Docs: Entity Types

• Unleashed Technologies: Drupal Entities - Part 1: What are they?

• Drupalize Me: Entity API Overview

5.4.4 Fields (content building blocks)

Fields are the building blocks of content in Drupal. For example, all content types (e.g. “Article”, or “Basic Page”)
provide content to the end-user via fields that are bundled with them. For example, when adding a basic page (a default
Drupal content type), the end-user is provided with form elements (or widgets) that allow the user to set the title and
the body text for the page. The “Body” is a field. When a basic page is viewed, the body is rendered on the page using
formatters and Drupal stores the values for the body in the database. Every field, therefore, provides three types of
functionality: instructions for storage, widgets for allowing input, and formatters for rendering.

Drupal provides a variety of built-in fields, and extension module developers have created a multitude of new fields
that can be added by the site admin to add new functionality and support new types of data. Tripal follows this model,
but adds a variety of new object oriented classes to support storage of data in biological databases such as Chado.

Note: Not every custom module will require fields. But if you need a new way to store and retrieve data, or if you
need data to appear on an existing Tripal content type then you will want to create a new field for your custom module.

5.4. Custom Module Development 95

https://www.drupal.org/docs/user_guide/en/planning-data-types.html
https://www.drupal.org/docs/user_guide/en/planning-data-types.html
https://www.drupal.org/docs/8/api/entity-api/introduction-to-entity-api-in-drupal-8
https://www.drupal.org/docs/8/api/entity-api/entity-types
https://www.unleashed-technologies.com/blog/2017/04/10/drupal-entities-part-1-what-are-they
https://drupalize.me/tutorial/entity-api-overview?p=2792

Tripal 4.x Documentation, Release 4.x.alpha.1

Field Classes

Anyone who wants to implement a new field in Drupal must implement three different classes:

• FieldItemBase: the class that defines a new field. This class interacts directly with the data storage plugin to load
and save the data managed by this field.

• WidgetBase: the class that defines the form elements (widgets) provided to the end-user to supply or change the
data managed by this field.

• FormatterBase: the class that defines how the field is rendered on the page.

These classes were extended by Tripal to provide additional functionality that allows Tripal-based fields to communicate
with additional data stores housing biological data. There is support for a number of types of datastores (e.g. MySQL,
PostgreSQL, SQLite) in core Drupal but you are required to choose a single data store for your site. The extension to
support multiple data stores provided by Tripal allows you to keep your biological data separate from the website and
still available to scientific analysis and visualization tools.

Chado is the default data store implemented within Tripal as it offers flexible support for a wide breadth of biological
data types, ontology-focused metadata, and robust data integrity. The following documentation will demonstrate how
to develop custom fields with data stored in Chado. However, the Tripal data storage plugin and Tripal Fields are
designed to work with additional data stores and documentation showing how to take advantage of this will be written
in the future.

Custom module developers who wish to add new fields to Tripal whose data are stored in Chado should implement the
following three classes for every new field:

• ChadoFieldItemBase: extends the Tripal class TripalFieldItemBase which extends the Drupal class FiedlItem-
Base. The TripalFieldItemBase must be used for all fields attached to Tripal content types and the ChadoField-
ItemBase adds Chado-specific support.

• TripalWidgetBase: a class that extends the Drupal class WidgetBase.

• TripalFormatterBase: a class that extends the Drupal class FormatterBase.

How to Write a New Field for Chado

Directory Setup

Drupal manages fields using its Plugin API. this means that as long as new field classes are placed in the correct
directory and have the correct “annotations” in the class comments then Drupal will find them and make the field
available. All new fields must be placed in the custom extension module inside of the src/Plugin/Field directory. There
are three subdirectories, one each for the three elements of a field: FieldType, FieldWidget, FieldFormatter. For a new
field named MyField the directory structure would look like the following:

mymodule
config
src

Plugin
Field

FieldFormatter
| | MyFieldFormatter.php

FieldType
| | MyFieldType.php

FieldWidget
| MyFieldWidget.php
|

(continues on next page)

96 Chapter 5. Extending Tripal

https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Field%21FieldItemBase.php/class/FieldItemBase/9.4.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Field%21WidgetBase.php/class/WidgetBase/9.4.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Field%21FormatterBase.php/class/FormatterBase/9.4.x
https://www.drupal.org/docs/drupal-apis/plugin-api

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

tests
templates

Note that the file name must match the class name.

Naming convention

The filename for your new field should adhere to the following schema. Please note the casing used. In addition, for
fields that will be included in Tripal Core, note the ‘Default’ designation, any fields added by extension modules should
not use ‘Default’:

Table 2: Tripal Core modules:

File Filename
Type MyFieldTypeDefault.php
Formatter MyFieldFormatterDefault.php
Widget MyFieldWidgetDefault.php

Table 3: Extension modules:

File Filename
Type MyFieldType.php
Formatter MyFieldFormatter.php
Widget MyFieldWidget.php

Within the individual files, in the annotation section, the ID also has to follow a specific format, and would look like
the following:

Table 4: Tripal Core modules:

File ID within annotation
Type my_field_type_default
Formatter my_field_formatter_default
Widget my_field_widget_default

Table 5: Extension modules:

File ID within annotation
Type my_field_type
Formatter my_field_formatter
Widget my_field_widget

5.4. Custom Module Development 97

Tripal 4.x Documentation, Release 4.x.alpha.1

About the Storage Backend

Default Drupal Behavior

By default, all built-in fields provided by Drupal store their data in the Drupal database. This is provided by Drupal’s
SqlContentEntityStorage storage plugin. This storage plugin will create a database table for every field. For example,
if you explore the Drupal database tables you will see the following for the body field attached to the node content type:

Table "public.node__body"
Column | Type | Collation | Nullable | Default

--------------+------------------------+-----------+----------+-----------------------
bundle | character varying(128) | | not null | ''::character varying
deleted | smallint | | not null | 0
entity_id | bigint | | not null |
revision_id | bigint | | not null |
langcode | character varying(32) | | not null | ''::character varying
delta | bigint | | not null |
body_value | text | | not null |
body_summary | text | | |
body_format | character varying(255) | | |
Indexes:

"node__body____pkey" PRIMARY KEY, btree (entity_id, deleted, delta, langcode)
"node__body__body_format__idx" btree (body_format)
"node__body__bundle__idx" btree (bundle)
"node__body__revision_id__idx" btree (revision_id)

Check constraints:
"node__body_delta_check" CHECK (delta >= 0)
"node__body_entity_id_check" CHECK (entity_id >= 0)
"node__body_revision_id_check" CHECK (revision_id >= 0)

The values provided by the user for the body of a node type are housed in this table. The following describes the
columns of the table.

These columns are present for all fields

• bundle: the machine name of the content type (e.g. node)

• deleted: a value of 1 indicates the field is marked for deletion

• entity_id: the unique ID of the node that this field belongs to.

• revision_id: the node revision ID.

• langcode: for fields that are translatable, this indicates the language of the saved value.

• delta: for fields that support multiple values, this is the index (starting at zero) for the order of the values.

These columns are specific to the field:

• body_value: stores the value for the body

• body_summary: stores the body summary

• body_format: instructions for how the body should be rendered (e.g. plain text, HTML, etc.)

98 Chapter 5. Extending Tripal

https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Entity%21Sql%21SqlContentEntityStorage.php/class/SqlContentEntityStorage/9.4.x

Tripal 4.x Documentation, Release 4.x.alpha.1

Support for Chado

For fields storing biological data in something other than Drupal tables, Tripal provides its own plugin named Tri-
palStorage. If a custom module wants to store data in a data backend other than in Drupal tables, it must create an
implementation of this plugin. By default, Tripal provides the ChadoStorage implementation that allows a field to
interact with a Chado database.

The ChadoStorage backend extends the SqlContentEntityStorage and will create a table in the Drupal schema for every
Tripal field that is added to a content type. The table columns will have the same default columns. It will also have a
set of additional columns for every property the field wants to manage.

The ChadoStorage backend is different from the SqlContentEntityStorage in that it will not store the values of the
properties in the table. This is because those values need to be stored in Chado–we do not want to duplicate the data
in the Drupal schema and the Chado schema. The ChadoStorage backend is also different in that it requires a set of
property settings that help it control how properties of a field are stored, edited and loaded from Chado. Instructions
for working with properties and storing data in Chado are described in the following sections.

Note: The ChadoStorage backend will not store biological data in the Drupal tables–only in the Chado tables. The
only exceptions are record IDs that associate the field with data in Chado.

Implementing a ChadoFieldItemBase Class

When creating a new Tripal field, the first class that must be created is the “type” class. This must extend the Chad-
oFieldItemBase class.

Single-Value Fields

A single-value field is the simplest Chado field. This is a field that manages a data value from a single column in a
single Chado table. For example, the genus column of the organism table of Chado stores the genus of an organism.
For the organism pages provided by Tripal, a single-value field is used to provide the genus.

Tripal provides some ready-to-use field classes for single-values. These are:

• ChadoIntegerTypeItem: for integer data.

• ChadoStringTypeItem: for string data with a max length.

• ChadoTextTypeItem: for string data with unlimited length.

• ChadoRealTypeItem: for real (floating point) numberic data.

• ChadoBoolTypeItem: for boolean data.

• ChadoDateTimeTypeItem: for data/time data.

Warning: The alpha v1 version of Tripal v4 does not yet implement these fields: ChadoRealTypeItem, Chado-
BoolTypeItem, ChadoDateTimeTypeItem

If you need to add a single-value field for your custom module then you do not need to write your own field! You can
use one of these existing field types. See the section Automate Adding a Field to a Content Type for instructions to add
the field during installation of your module.

5.4. Custom Module Development 99

Tripal 4.x Documentation, Release 4.x.alpha.1

Complex Fields

A complex field is one that manages multiple properties (or multiple values) within a single field. An example of a
complex field is one that stores/loads the organism of a germplasm content type. Within Chado, a record in the stock
table is used to store germplasm data. The stock table has a foreign key constraint with the organism table. Therefore,
a germplasm page must provide a field that allows the user to specify an organism for saving. It should also format the
organism name for display.

In practice, the stock table stores the numeric organism_id when saving a germplasm. We could use a single-value
ChadoIntegerTypeItem to allow the user to provide the numeric ID for the organism. But, this is not practical. Users
should not be required to use a look-up table of numeric organism IDs.

Instead what we need is:

• A field that will store and load a numeric organism ID value that the user will never see.

• A field that has access to the genus, species, infraspecific type, infraspecific name, etc., of the organism.

• A widget (form element) that allows the user to select an existing organism.

• A formatter that prints the full scientific name of the organism.

Class Setup

To create a new field, we will extend the ChadoFieldItemBase. For a new field named MyField we would create a new
file in our module here: src/Plugin/Field/FieldType/MyfieldType.php. The following is an empty class example:

<?php

namespace Drupal\mymodule\Plugin\Field\FieldType;

use Drupal\tripal_chado\TripalField\ChadoFieldItemBase;
use Drupal\tripal_chado\TripalStorage\ChadoVarCharStoragePropertyType;
use Drupal\tripal_chado\TripalStorage\ChadoIntStoragePropertyType;
use Drupal\tripal_chado\TripalStorage\ChadoTextStoragePropertyType;
use Drupal\tripal\TripalStorage\StoragePropertyValue;

/**
* Plugin implementation of Tripal string field type.
*
* @FieldType(
* id = "MyField",
* label = @Translation("MyField Field"),
* description = @Translation("An example field"),
* default_widget = "MyFieldWidget",
* default_formatter = "MyFieldFormatter"
*)
*/
class MyField extends ChadoFieldItemBase {

public static $id = "MyField";

/**
* {@inheritdoc}
*/

(continues on next page)

100 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

public static function defaultFieldSettings() {
$settings = [];
return $settings + parent::defaultFieldSettings();

}

/**
* {@inheritdoc}
*/
public function fieldSettingsForm(array $form, FormStateInterface $form_state) {
$elements = [];
return $elements + parent::fieldSettingsForm($form, $form_state);

}

/**
* {@inheritdoc}
*/
public static function defaultStorageSettings() {
$settings = parent::defaultStorageSettings();
return $settings;

}

/**
* {@inheritdoc}
*/
public function storageSettingsForm(array &$form, FormStateInterface $form_state, $has_

→˓data) {
$elements = [];
return $elements + parent::storageSettingsForm($form,$form_state,$has_data);

}

/**
* {@inheritdoc}
*/
public function getConstraints() {
$constraints = parent::getConstraints();
return $constraints;

}

/**
* {@inheritdoc}
*/
public static function tripalTypes($field_definition) {
$entity_type_id = $field_definition->getTargetEntityTypeId();

// Get the settings for this field.
$settings = $field_definition->getSetting('storage_plugin_settings');
$base_table = $settings['base_table'];

// Determine the primary key of the base table.
$chado = \Drupal::service('tripal_chado.database');
$schema = $chado->schema();
$base_schema_def = $schema->getTableDef($base_table, ['format' => 'Drupal']);

(continues on next page)

5.4. Custom Module Development 101

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

$base_pkey_col = $base_schema_def['primary key'];

// Return the array of property types.
return [
new ChadoIntStoragePropertyType($entity_type_id, self::$id,'record_id', [
'action' => 'store_id',
'drupal_store' => TRUE,
'chado_table' => $base_table,
'chado_column' => $base_pkey_col

]),
];

}
}

Below is a line-by-line explanation of each section of the code snippet above.

Namespace and Use Statements

The following should always be present and specifies the namespace for this field.

namespace Drupal\mymodule\Plugin\Field\FieldType;

Note: Be sure to change mymodule in the namespace to the name of your module.

Warning: If you misspell the namespace your field will not work properly.

The following “use” statements are required for all Chado fields.

use Drupal\tripal_chado\TripalField\ChadoFieldItemBase;
use Drupal\tripal\TripalStorage\StoragePropertyValue;

The following “use” statements are for each type of property your class will support. See the Property Types section
for a listing of property classes you could import if needed.

use Drupal\tripal_chado\TripalStorage\ChadoVarCharStoragePropertyType;
use Drupal\tripal_chado\TripalStorage\ChadoIntStoragePropertyType;
use Drupal\tripal_chado\TripalStorage\ChadoTextStoragePropertyType;

Annotation Section

The annotation section in the class file is the in-line comments for the class. Note the @FieldType stanza in the
comments. Drupal uses these annotations to recognize the new field. It provides information such as the field ID, label
and description. It also indicates the default widget and formatter class. This annotation is required.

/**
* Plugin implementation of Tripal string field type.
*

(continues on next page)

102 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

* @FieldType(
* id = "MyField",
* label = @Translation("MyField Field"),
* description = @Translation("An example field"),
* default_widget = "MyFieldWidget",
* default_formatter = "MyFieldFormatter"
*)
*/

Warning: If the annotation section is not present, has misspellings or is not complete, the field will not be
recognized by Drupal.

Class Definition

Next, the class definition line must extend the ChadoFieldItemBase class. You must name your class the same as the
filename in which it is contained (minus the .php extension).

class MyField extends ChadoFieldItemBase {

Warning: If you misspell the class name such that it is not the same as the filename of the file in which it is
contained, then the field will not be recognized by Drupal.

The defaultFieldSettings() Function

This is an optional function. If your field requires some additional settings that must be set when the field is added to
a content type you can set those here.

public static function defaultFieldSettings() {
$settings = [];
return $settings + parent::defaultFieldSettings();

}

This function will return an associative array of all settings your field supports. You are free to use whatever settings you
want. However, all fields in Tripal must be mapped to a controlled vocabulary term. Therefore, Tripal will automatically
add the following settings to every field:

• termIdSpace: the namespace of the controlled vocabulary of the term assigned to this field (e.g. GO for the
Gene Ontology; SO for the Sequence Ontology).

• termAccession: the accession of the term assigned to this field.

These settings are automatically attached to the field when the parent::defaultFieldSettings() function is called.

As an example, the Tripal organism field sets the term ID space and accession:

public static function defaultFieldSettings() {
$settings = parent::defaultFieldSettings();
$settings['termIdSpace'] = 'OBI';
$settings['termAccession'] = '0100026';

(continues on next page)

5.4. Custom Module Development 103

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

return $settings;
}

Not all fields will need the termIdSpace and termAccession hardcoded like in the example above. A field can be re-used
for different terms and those can be set with the field is added automatically. See the Automate Adding a Field to a
Content Type section.

The defaultStorageSettings() Function

The field settings described in the previous function apply to the field. But some settings may be needed for the storage
backend. Drupal distinguishes between field settings and field storage settings.

/**
* {@inheritdoc}
*/
public static function defaultStorageSettings() {
$settings = parent::defaultStorageSettings();
$settings['storage_plugin_settings']['base_column'] = '';
return $settings;

}

In the example above the first line calls parent::defaultStorageSettings(). this will retrieve the default settings
for all Chado fields. This includes a setting named base_table in the storage_plugin_settings array. The
ChadoStorage backend requires a base_table setting to tell it what table of Chado this field works with. Tripal
will pass to the storage backend any settings in the storage_plugin_settings array. But you are free to add any
additional settings you would like to help manage your field, especially if those settings help the field define how it will
interact with Chado.

An example where a storage settings is needed is in the ChadoStringTypeItem field that gets used for any single-value
string mapped to a Chado table column. Here we must set the maximum length of the string. Here is the corresonding
defaultStorageSettings function from this field:

public static function defaultStorageSettings() {
$settings = parent::defaultStorageSettings();
$settings['max_length'] = 255;
$settings['storage_plugin_settings']['base_table'] = '';
$settings['storage_plugin_settings']['base_column'] = '';
return $settings;

}

The storageSettingsForm() Function

If a field needs input from the user to provide values for settings, then the storageSettingsForm() function can be
implemented. Add the form elements needed for the user to provide values.

For example, the ChadoStringTypeItem field wants to allow the site admin to set the maximum string length.

public function storageSettingsForm(array &$form, FormStateInterface $form_state, $has_
→˓data) {
$elements = [];
$elements['max_length'] = [

(continues on next page)

104 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

'#type' => 'number',
'#title' => t('Maximum length'),
'#default_value' => $this->getSetting('max_length'),
'#required' => TRUE,
'#description' => t('The maximum length of the field in characters.'),
'#min' => 1,
'#disabled' => $has_data,

];
return $elements + parent::storageSettingsForm($form,$form_state,$has_data);

}

The site admin will be able to change the storage settings if they:

• Navigate to Structure > Tripal Content Types

• Choose the Manage fields option in the dropdown next to the Tripal content type.

• Choose the Edit option in the dropdown next to a field of type “Chado String Field Type”

• Clicking on the Settings tab.

Warning: The key of the $elements array must match the name of the setting. In the example code above, notice
that “max_length” is used in the elements array and is the name of the setting.

Note: Site admins can change storage settings for a field only before it is used. Once the field is used to store data on
a live entity, storage settings are fixed.

The fieldSettingsForm() Function

The fieldSettingsForm() functions in the same was as the storageSettingsForm() function but for the field settings.

The getConstraints() Function

The getConstraints() function is used to provide a set of constraints to ensure that values provided to fields are appro-
priate. You can read more about defining validation contraints for fields here.

For following code example, is from the ChadoStringTypeItem field. It wants to ensure that that max length of the
string is not exceeded.

public function getConstraints() {
$constraints = parent::getConstraints();
if ($max_length = $this->getSetting('max_length')) {

$constraint_manager = \Drupal::typedDataManager()->getValidationConstraintManager();
$constraints[] = $constraint_manager->create('ComplexData', [
'value' => [
'Length' => [
'max' => $max_length,
'maxMessage' => t('%name: may not be longer than @max characters.', [
'%name' => $this

(continues on next page)

5.4. Custom Module Development 105

https://www.drupal.org/docs/drupal-apis/entity-api/entity-validation-api/defining-constraints-validations-on-entities-andor-fields

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

->getFieldDefinition()
->getLabel(),
'@max' => $max_length,

]),
],

],
]);

}
return $constraints;

}

The tripalTypes() Function

The tripalTypes() function is used to specify the property types that this field will manage. A field may house as many
properties as it needs. For example, the organism field that may appear on a stock page needs to track the genus, species,
infraspecific type, and infraspecific name for an organism. These can be tracked using properties. Each property is of
a specific type such as string, text, integer, etc. This function is used to define the property types. A property type is
actually an object, thus, this function returns an array of property type objects. See the Property Types section below
for more information about these object classes.

In the code block below you can see the steps where the field settings are retrieved, and then used to create an array
containing a single property. More about properties is described in the next section.

public static function tripalTypes($field_definition) {
$entity_type_id = $field_definition->getTargetEntityTypeId();

// Get the settings for this field.
$settings = $field_definition->getSetting('storage_plugin_settings');
$base_table = $settings['base_table'];

// Determine the primary key of the base table.
$chado = \Drupal::service('tripal_chado.database');
$schema = $chado->schema();
$base_schema_def = $schema->getTableDef($base_table, ['format' => 'Drupal']);
$base_pkey_col = $base_schema_def['primary key'];

// Return the array of property types.
return [
new ChadoIntStoragePropertyType($entity_type_id, self::$id,'record_id', [
'action' => 'store_id',
'drupal_store' => TRUE,
'chado_table' => $base_table,
'chado_column' => $base_pkey_col

]),
];

}

106 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

Property Types

As was introduced in the The tripalTypes() Function section above, each field must define the set of properties that it
will manage. The set of property types is returned by the tripalTypes() function.

Tripal provides a variety of property type classes that you will use to define these properties. These are named after
PostgreSQL column types:

• ChadoBoolStoragePropertyType: a boolean property.

• ChadoDateTimeStoragePropertyType: a date/time property.

• ChadoIntStoragePropertyType: an integer property.

• ChadoRealStoragePropertyType: a floating point property.

• ChadoTextStoragePropertyType: an unlimited string property.

• ChadoVarCharStoragePropertyType: a string property with a maximum length.

All of these classes can be instantiated with four arguments:

• The entity type ID: the unique ID for the entity type.

• The field ID: the unique ID of the field this property belongs to.

• The property “key”: a unique key for this property.

• The property settings: an array of settings for this property. See the Property Settings section below for more
information on how to specify the property settings array.

Property Settings

The Property Types section above indicated that each property type class has a fourth argument that provides settings for
the property. These settings are critical for describing how the property is managed by the ChadoStorage backend.
The settings are an associative array of key-value pairs that specify an “action” to perform for each property and
corresponding helper information. The following actions can be used:

• store_id: indicates that the value of this property will hold the record ID (or primary key ID) of the record in
the base table of Chado. Common base tables include: analysis, feature, stock, pub, organism. This action uses
the following key/value pairs:

– chado_table: (required) the name of the table that this property will get stored in. This will always be the
base table name (e.g. feature).

– chado_column: (required) the name of the column in the table where This property value will get stored.
This will always be the primary key of the base table (e.g., feature_id).

• store_link: indicates that the value of this property will hold the value of a foreign key ID to the base table. A
property with this action is required for fields that provide ancillary information about a record but that informa-
tion is not stored in a column of the base table, but instead in a linked table. Examples for such a situation would
be values from property table: e.g., analysisprop, featureprop, stockprop, etc. This action uses the following
key/value pairs:

– chado_table: (required) the name of the linked table (e.g. analysisprop)

– chado_column: (required) the name of the foreign key column that links to the base table (e.g. analysis_id)

– drupal_store: (requited) this setting should always be TRUE for this action. This forces Tripal to store this
value in the Drupal field tables. Without this, Tripal cannot link the fields in Drupal with a base record.

5.4. Custom Module Development 107

Tripal 4.x Documentation, Release 4.x.alpha.1

• store_pkey: indicates that the value of this property will hold the primary key ID of a linked table. As with the
store_link action, a property with this action is required for fields that provide ancillary information about a
record but that information is not stored in a column of the base table, but instead in a linked table. Examples for
such a situation would be values from property table: e.g., analysisprop, featureprop, stockprop, etc. This action
uses the following key/value pairs:

– chado_table: (required) the name of the linked table (e.g. analysisprop)

– chado_column: (required) the name of the primary key column that links to the base table (e.g. analysis-
prop_id)

– drupal_store: (requited) this setting should always be TRUE for this action. This forces Tripal to store this
value in the Drupal field tables. Without this, Tripal cannot link the fields in Drupal with a base record.

• store: indicates that the value of this property should be stored in the Chado table. This action uses the following
key/value pairs:

– chado_table: (required) the name of the table that this property will get stored in.

– chado_column: (required) the name of the column in the table where this property value will get stored.

– delete_if_empty: (optional) if TRUE and this field is for ancillary data then the ancillary record should be
removed if this value is empty.

– empty_value: (optional) the value that indicates an empty state. This could be 0, an empty string or NULL.
Whichever is appropriate for the property. This value is used in conjunction with the delete_if_empty
setting.

• join: indicates that the value of this property is obtained by joining the record ID in the property with the store_id
action with another table in Chado.

– path: (required) the sequence of joins that should be performed.

∗ For example if the base table for the record is feature and we want to join on the organism_id to get
the spcies then the path would be: feature.organism_id>organism.organism_id.

∗ Separate multiple joins with a semicolon. For example to get the infraspecific name of an organism:
feature.organism_id>organism.organism_id;organism.type_id>cvterm.cvterm_id.

– chado_column: (required) the name of the column from the last join that will contain the value for this
field.

– as: (optional) to prevent a naming conflict in the SQL that the ChadoStorage backend will generate, you
can rename the chado_column with a different name.

• replace: indicates that the value of this property is a tokenized string and should be replaced with values from
other properties.

– template: (required) a string containing the value of the field. The string should contain tokens that will
be replaced by values of other properties. Tokens are surrounded by square brackets and contain the keys
of other properties. For example. if the keys for other properties are “genus”, “species”, “iftype”, “ifname”
you can create a property that builds the full scientific name of an organism with the following template
string: “<i>[genus] [species]</i> [iftype] [ifname]”.

• function: indicates that the value of this property will be set by a callback function.

– Currently not implemented in Alpha release v1

As an example, let’s look at the tripalTypes() function of the field that allows an end-user to add an organism to
content. This code is found in the tripal_chado\src\Plugin\Field\FieldType\obi__organism.php file of
Tripal:

108 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

public static function tripalTypes($field_definition) {
$entity_type_id = $field_definition->getTargetEntityTypeId();

// Get the length of the database fields so we don't go over the size limit.
$chado = \Drupal::service('tripal_chado.database');
$schema = $chado->schema();
$organism_def = $schema->getTableDef('organism', ['format' => 'Drupal']);
$cvterm_def = $schema->getTableDef('cvterm', ['format' => 'Drupal']);
$genus_len = $organism_def['fields']['genus']['size'];
$species_len = $organism_def['fields']['species']['size'];
$iftype_len = $cvterm_def['fields']['name']['size'];
$ifname_len = $organism_def['fields']['infraspecific_name']['size'];
$label_len = $genus_len + $species_len + $iftype_len + $ifname_len;

// Get the base table columns needed for this field.
$settings = $field_definition->getSetting('storage_plugin_settings');
$base_table = $settings['base_table'];
$base_schema_def = $schema->getTableDef($base_table, ['format' => 'Drupal']);
$base_pkey_col = $base_schema_def['primary key'];
$base_fk_col = array_keys($base_schema_def['foreign keys']['organism']['columns'])[0];

// Return the properties for this field.
return [
new ChadoIntStoragePropertyType($entity_type_id, self::$id, 'record_id', [
'action' => 'store_id',
'drupal_store' => TRUE,
'chado_table' => $base_table,
'chado_column' => $base_pkey_col

]),
new ChadoIntStoragePropertyType($entity_type_id, self::$id, 'organism_id', [
'action' => 'store',
'chado_table' => $base_table,
'chado_column' => $base_fk_col,

]),
new ChadoVarCharStoragePropertyType($entity_type_id, self::$id, 'label', $label_len,␣

→˓[
'action' => 'replace',
'template' => "<i>[genus] [species]</i> [infraspecific_type] [infraspecific_name]",

]),
new ChadoVarCharStoragePropertyType($entity_type_id, self::$id, 'genus', $genus_len,␣

→˓[
'action' => 'join',
'path' => $base_table . '.organism_id>organism.organism_id',
'chado_column' => 'genus'

]),
new ChadoVarCharStoragePropertyType($entity_type_id, self::$id, 'species', $species_

→˓len, [
'action' => 'join',
'path' => $base_table . '.organism_id>organism.organism_id',
'chado_column' => 'species'

]),
new ChadoVarCharStoragePropertyType($entity_type_id, self::$id, 'infraspecific_name',

→˓ $ifname_len, [
(continues on next page)

5.4. Custom Module Development 109

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

'action' => 'join',
'path' => $base_table . '.organism_id>organism.organism_id',
'chado_column' => 'infraspecific_name',

]),
new ChadoIntStoragePropertyType($entity_type_id, self::$id, 'infraspecific_type', [
'action' => 'join',
'path' => $base_table . '.organism_id>organism.organism_id;organism.type_id>cvterm.

→˓cvterm_id',
'chado_column' => 'name',
'as' => 'infraspecific_type_name'

])
];

}

The Tripal organism property is used to associate an organism to a base record that has an organism_id column in
the Chado table. We only need to store the organism_id to make this work, but again, requiring an end-user to enter a
numeric organism is not ideal. Also we want our formatter to print a nicely formatted scientific name for the organism.
We need more properties.

In the code above, we create seven properties for this field. As required we must have a property that uses the ac-
tion store_id that will house the record ID (e.g., feature.feature_id). Because this field is supposed to store the
organism_id for the feature, stock, etc., we have a property that uses the action store and maps to the organism_id
column of the table.

We also have a variety of properties with a join action. These are used to join on the base table to get information such
as the genus, species, and infraspecific type. Lastly, we have a property with the action replace that uses a tokenized
string to create a nicely formatted scientific name for the organism.

Implementing a TripalWidgetBase Class

Warning: This documentation is still being developed. In the meantime there are examples in the Tripal core
codebase. Specifically, look in the tripal_chado/src/Plugin/Field/FieldWidget directory.

Implementing a TripalFormatterBase Class

Warning: This documentation is still being developed. In the meantime there are examples in the Tripal core
codebase. Specifically, look in the tripal_chado/src/Plugin/Field/FieldFormatter directory.

Automate Adding a Field to a Content Type

Warning: This documentation is still being developed. In the meantime there are examples for programmat-
ically adding TripalFields in the Tripal core codebase. Specifically, look in the Chado Preparer class in tri-
pal_chado/src/Task/ChadoPreparer.php.

110 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

What About Fields not for Chado?

Warning: This documentation is still being developed. Currently ChadoStorage provides
an example for implementing the TripalStorage data store extension. It can be found in tri-
pal_chado/src/Plugin/TripalStorage/ChadoStorage.php.

5.4.5 Forms (user input)

In Drupal 8, all the parts of the form are contained within a single class. The buildForm method is where you define
what your form will look like. This is done using the Form API which is very similar to what was used in Drupal
7. The validateForm method allows you to validate the user submitted data and give feedback to the user and the
submitForm method allows you to act on the data submitted.

Defining forms as structured arrays, instead of as straight HTML, has many advantages including:

• Consistent HTML output for all forms.

• Forms provided by one module can be easily altered by another without complex search and replace
logic.

• Complex form elements like file uploads and voting widgets can be encapsulated in reusable bundles
that include both display and processing logic.

Excerpt from Official Drupal Docs: Introduction to Form API

Tripal uses the Drupal Form API without any modification and your form classes will be saved, one per file, in the
src/forms directory of your extension module.

Additional Resources:
• Official Drupal Docs: Introduction to Form API

• Official Drupal Docs: Form API

• Karim Boudjema: Create a custom form with Form API in Drupal 8

• Jaywant Topno: Step by step method to create a custom form in Drupal 8

• Official Drupal Docs: Upgrading forms from Drupal 7

5.4.6 Error Reporting and Logging

Tripal Logger

The Tripal logger service can be used to report status and errors to both the site user and to site administrators through
the server log. A basic example is

$logger = \Drupal::service('tripal.logger');
$logger->notice('Hello world');
$logger->warning('Hello world');
$logger->error('Hello world');

There are eight levels of logging available. In order of increasing severity they are: debug, info, notice, warning, error,
critical, alert, emergency

The log message can be a simple quoted PHP string, or a string that utilizes placeholders. In the latter case, pass in an
associative array of placeholder keys and values into the second parameter. For example:

5.4. Custom Module Development 111

https://www.drupal.org/docs/8/api/form-api/introduction-to-form-api
https://www.drupal.org/docs/8/api/form-api/introduction-to-form-api
https://www.drupal.org/docs/8/api/form-api
http://karimboudjema.com/en/drupal/20181013/create-custom-form-form-api-drupal-8
https://www.valuebound.com/resources/blog/step-by-step-method-to-create-a-custom-form-in-drupal-8
https://www.drupal.org/node/1932058

Tripal 4.x Documentation, Release 4.x.alpha.1

$options = [];
$logger->error('Error, status code @errornumber, error message @message', [
'@errornumber' => $resultcode,
'@message' => $errormessage,

], $options);

There are a few settings that can be passed in using the third $options parameter to control where the message is sent.

Use $options['drupal_set_message'] = TRUE; if you want the message to appear on the user’s
screen, default is FALSE.

Use $options['logger'] = FALSE; if you do NOT want the message to go to the log at /ad-
min/reports/dblog, default is TRUE.

The logger checks the TRIPAL_SUPPRESS_ERRORS environment variable. If it is defined with the value true (case
insensitive), then all logging is suppressed even if it is not an “error” message. This is generally only used for automated
testing to prevent output from being printed.

An additional pair of options is available for implementing progress bars. For the first message, set
$options['is_progress_bar'] = TRUE; and $options['first_progress_bar'] = TRUE; For subsequent
updates to the progress bar, only set $options['is_progress_bar'] = TRUE; It is likely for a progress bar that
you will also want to include $options['logger'] = FALSE; to avoid overpopulating your server log.

5.4.7 Views (content listings)

Drupal Views is a module which allows administrators to create and/or customize existing content listings. In Drupal 8,
the views module is part of core so you simply need to enable it to get this functionality. Developers can provide default
views through extension modules which allows your content listings and searches to be both easily customizable and
under version control.

Additional Resources:
• Subhojit Paul: How to create views programmatically in Drupal 8

• ComputerMinds: Render a Drupal 8 View programmatically (Render arrays FTW!)

• hook_views_data: how to integrate custom tables

5.4.8 Configuration Variables

Configuration variables can be done two ways in Drupal 8 depending upon whether you want your variables sync’d
between production and development environments. Specifically,

• Simple configuration (Config API) — Settings that require synchronization between different environments, e.g.
site name, slogan, user account settings, etc.

• Local configuration (State API) — Settings that are more transient or subject to change and which should not be
synchronized between environments. e.g. the last cron run, the timestamp for statistics, last update time, etc.

Additional Resources:
• Official Drupal Docs: Config API

• Official Drupal Docs: State API

• X-Team: Configuration vs State

• Antistatique: Drupal 8 - Differences between Configuration API & State API

112 Chapter 5. Extending Tripal

http://subhojit777.in/create-views-programatically-drupal8/
https://www.computerminds.co.uk/articles/render-drupal-8-view-programmatically-render-arrays-ftw
https://api.drupal.org/api/drupal/core!modules!views!views.api.php/function/hook_views_data/8.8.x
https://www.drupal.org/docs/8/creating-custom-modules/defining-and-using-your-own-configuration-in-drupal-8
https://www.drupal.org/docs/8/api/state-api/overview
https://x-team.com/blog/bytesized-drupal-configuration-or-state/
https://antistatique.net/en/we/blog/2016/06/14/drupal-8-differences-between-configuration-api-state-api

Tripal 4.x Documentation, Release 4.x.alpha.1

5.4.9 Theme (display)

Theming is the process of customizing the display of pages or fields. Drupal 8 theming is a two part process, as
described below. Tripal uses the Drupal theming system without alteration.

1. Use hook_theme to tell Drupal about your custom template. This hook implementation should go in your
my_module.module file.

2. Use the preprocess hook to use prepare your variables and do any processing needed.

3. Finally, you use Twig templates to format the HTML and insert the variables prepared in the preprocess hook.
No processing should be done in these templates.

Additional Resources:
• Official Drupal Docs: Theming in your custom module

• Official Drupal Docs: Create custom twig templates for custom module

• Official Drupal Docs: Working With Twig Templates

• Official Drupal Docs: Defining a custom theme

5.4.10 Caching (performance)

Additional Resources:
• Official Drupal Docs: Cache concept

• Official Drupal Docs: Cache API

• Valuebound: A beginners guide to caching in Drupal 8

• Drupal 8: Quick Handbook on Cache API

• Acquia: Coding with Cache Tags in Drupal 8

5.4.11 Alternate Database Backends

Drupal is database agnostic; however, Tripal is still PostgreSQL leaning. Tripal 4+ are completely Chado agnostic
though with all core functionality including Biological Vocabularies and Content Types standing independent of Chado.
This allows for the development of alternate data backends with Chado already being implemented by the Tripal Chado
core module. This guide will describe how to integrate additional storage backends using Chado as an example.

Tripal Vocabularies, IDSpaces and Terms

Tripal provides a Drupal Plugin for hooking into TripalVocab, TripalVocabSpace and TripalTerm classes. The Tripal-
TermStorage plugin provides a number of methods mapping to preSave, postSave, load and delete functions for each
entity type. This allows developers to implement this plugin through creation of a single class which can then handle
full integration of all three classes with an additional data backend.

To create your own data backend for Vocabularies and Terms, you can follow the standard Drupal procedure for imple-
menting plugins which will be detailed below.

5.4. Custom Module Development 113

https://www.drupal.org/docs/8/creating-custom-modules/theming
https://www.drupal.org/docs/8/theming/twig/create-custom-twig-templates-for-custom-module
https://www.drupal.org/docs/8/theming/twig/working-with-twig-templates
https://www.drupal.org/docs/8/theming
https://www.drupal.org/docs/user_guide/en/prevent-cache.html
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.valuebound.com/resources/blog/a-beginners-guide-to-caching-drupal-8
https://www.axelerant.com/resources/team-blog/drupal-8-quick-handbook-on-cache-api
https://dev.acquia.com/blog/coding-with-cache-tags-in-drupal-8/13/09/2018/19851

Tripal 4.x Documentation, Release 4.x.alpha.1

Step 1: Create your plugin implementation class

Your entire data backend will exist in a single class. This class implements the TripalTermStorageInterface and extends
the TripalTermStorageBase. It also uses a number of other classes in order to pull them into the current scope. The
following shows the Chado Integration class as an example. To create your own change the namespace to match your
modules, the annotation to describe your data backend and the class name. This file should be created in your src/
Plugin/TripalTermStorage directory in order to be discovered by Drupal/Tripal.

namespace Drupal\tripal_chado\Plugin\TripalTermStorage;

use Drupal\tripal\Entity\TripalVocab;
use Drupal\tripal\Entity\TripalVocabSpace;
use Drupal\tripal\Entity\TripalTerm;

use Drupal\tripal\Plugin\TripalTermStorage\TripalTermStorageBase;
use Drupal\tripal\Plugin\TripalTermStorage\TripalTermStorageInterface;
use Drupal\Core\Entity\EntityStorageInterface;

/**
* TripalTerm Storage plugin: Chado Integration.
*
* @ingroup tripal_chado
*
* @TripalTermStorage(
* id = "chado",
* label = @Translation("GMOD Chado Integration"),
* description = @Translation("Ensures Tripal Vocabularies are linked with chado␣
→˓cvterms."),
*)
*/
class TripalTermStorageChado extends TripalTermStorageBase implements␣
→˓TripalTermStorageInterface {

}

This plugin will work without any methods implemented although it obviously will not connect your data backend
just yet. To test that your new implementation is registered properly with Drupal/Tripal you can use Drupal Console.
Specifically you would use the debug:plugin Command command as shown here:

drupal debug:plugin tripal.termStorage

This will output a list of implementations for the Tripal Term Storage plugin and should include both your plugin
implementation, as well as, the chado one.

114 Chapter 5. Extending Tripal

https://drupalconsole.com
https://drupalconsole.com/docs/en/commands/debug-plugin

Tripal 4.x Documentation, Release 4.x.alpha.1

Step 2: Implement the methods you need for integration.

For a list of available methods including documentation, check out the tripal/src/Plugin/TripalTermStorage/
TripalTermStorageInterface.php file. There is an example for chado available in the tripal_chado/src/
Plugin/TripalTermStorage/TripalTermStorageChado.php

5.5 Automated Testing

Tripal 4 is being developed with automated testing as it is upgraded. This greatly improves the stability of our software
and our ability to fix any bugs. We highly recommend developing automated testing alongside any extension modules
you create! This guide is intended to explain how automated testing is working for Tripal 4 and help you develop similar
tests for your extensions.

5.5.1 How run automated tests locally

See the Drupal “Running PHPUnit tests” guide for instructions on running tests on your local environment. In order to
ensure our Tripal functional testing is fully bootstrapped, tests should be run from Drupal core.

If you are using the docker distributed with this module, then you can run tests using:

docker exec --workdir=/var/www/drupal/web/modules/contrib/tripal tripal phpunit

5.5.2 Tripal-focused Testing

The following automated testing documentation and tutorials are focused on testing Tripal-specific functionality within
Tripal Core and Extension modules. If there is a topic you would like covered that is not yet documented, please add
an issue on our github at https://github.com/tripal/tripal_doc/issues!

Tripal Testing Environment

Tripal uses the Drupal testing environment to automate our tests using PHPUnit. This means that when you run tests
on any Tripal site, the following will happen FOR EACH TEST:

1. Drupal will setup a virtual Drupal site whose level of functionality depends on whether you are running a Kernel
or Functional Test. This will actually setup a full drupal database schema within your current site temporarily.
Note: This is not a new postgresql schema but rather creates all the tables used by Tripal in the same public
schema but with prefixes in the table names.

• Kernel tests will give you a fully functional site that cannot be interacted with through the browser and that only
has the specific modules, tables, etc. that you specify in your test setUp()

• Functional tests will have a fully functional site with methods to explore the fully rendered pages within the test.
It will still only have the modules you specify enabled but it will run the entire install for those modules whereas
kernel tests do not.

2. Tripal does not yet do any additional preparing of the Drupal test environment so as not to include any more than
you need for your tests. This means there are no content types, no fields, no TripalTerms, etc. However, we do
provide a number of methods to complement the Drupal methods in helping you setup the environment exactly
as you want to. These will be described in the next section.

3. The code inside your tests setUp() is now run to setup the environment for this test. The same setup will be run
for all tests in the same test class.

5.5. Automated Testing 115

https://www.drupal.org/node/2116263
https://github.com/tripal/tripal_doc/issues
https://phpunit.de/

Tripal 4.x Documentation, Release 4.x.alpha.1

4. Finally your test method is called. Note: any services, plugins, etc you use here will only have the test environment
available. You will not have access to any data in your main site, nor should this long term affect your main site.
That said, we do not recommend running tests on production sites!

5. Once your test is complete, the tearDown() method is called to clean the entire development environment up.
This includes dropping the development drupal tables including any changes made by your test.

Setting up Content Types

As mentioned above, there are no content types in the testing environment. That means to do any testing related to
content types or fields, you will first need to setup content types in your environment. Tripal has provided helper
methods to make this easier! These are available in any test that extends the `TripalTestBrowserBase`, `Tripal-
TestKernelBase`, `ChadoTestKernelBase`, and `ChadoTestBrowserBase`.
For example, the following example creates the organism Tripal Term and then the organism content type:

/**
* {@inheritdoc}
*/
protected function setUp(): void {
parent::setUp();

// Create the TripalTerm used for the organism content type.
$this->createTripalTerm([
'vocab_name' => 'obi',
'id_space_name' => 'OBI',
'term' => [
'name' => 'organism',
'definition' => '',
'accession' =>'0100026',

]],
'chado_id_space', 'chado_vocabulary'

);

// Create the Organism Content Type
$this->createTripalContentType([
'label' => 'Organism',
'termIdSpace' => 'OBI',
'termAccession' => '0100026',
'category' => 'General',
'id' => 'organism',
'help_text' => 'A material entity that is an individual living system, ' .
'such as animal, plant, bacteria or virus, that is capable of replicating ' .
'or reproducing, growth and maintenance in the right environment. An ' .
'organism may be unicellular or made up, like humans, of many billions ' .
'of cells divided into specialized tissues and organs.',

]);
}

The above will work just fine on its own in a functional test as long as you have tripal listed in your $modules array.
However, you will need to make additional parts available in kernel tests. Specifically, add the following install calls to
the top of your setUp method:

116 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

/**
* {@inheritdoc}
*/
protected function setUp(): void {
parent::setUp();

// Make the TripalTerm database tables available.
$this->installSchema('tripal_terms');
$this->installSchema('tripal_terms_vocabs');
$this->installSchema('tripal_terms_idspaces');

// Make the User, Tripal Content and Tripal Content Type entities available.
$this->installEntitySchema('user');
$this->installEntitySchema('tripal_entity');
$this->installEntitySchema('tripal_entity_type');

Warning: The above content type will NOT have any fields attached to it yet! See the following section for
adding fields.

Adding Fields to Content Types

Now that we have a Tripal Content type, we will want to add fields to it. Again, Tripal provides an easy to use function
to create field instances and attach them to your entity in the test environment!

The following code snippet shows how to add a single field to an existing content type in the test environment. This
should go in your setUp() method after the content type is already created.

// Create the term used by the field.
// This is the term that would normally get set
// in the form when adding a field through the UI.
$genus_term = $this->createTripalTerm([
'vocab_name' => 'taxonomic_rank',
'id_space_name' => 'TAXRANK',
'term' => [
'name' => 'genus',
'definition' => '',
'accession' =>'0000005',

]],
'chado_id_space', 'chado_vocabulary'

);
// Create the field instance.
$this->createTripalField(
// The machine name of the content type to attach the field to.
'organism',
// The field settings + details.
[
// This can be anything.
'field_name' => 'organism_taxrank_0000005',
// This is the machine name of the field type you want to create.
'field_type' => 'chado_string_type_default',

(continues on next page)

5.5. Automated Testing 117

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

'term' => $genus_term,
'is_required' => TRUE,
'cardinality' => 1,
// This indicates the base chado table and column to use for this field.
// You would include anything here that you would normally supply on
// the storage settings form.
'storage_plugin_settings' => [
'base_table' => 'organism',
'base_column' => 'genus'

],
]

);

If we later want to create content, you will need to create at least all required fields in order for the content to be saved
properly. You will also likely need to create tripal terms for any properties that this field has as well.

Chado Testing Environment

The chado testing environment builds upon the Tripal testing environment. I will describe the chado specific portions
in detail below but for more detail on the other steps you should check out the documentation on the Tripal Testing
Environment.

1. Drupal sets up the testing environment including it’s own database and fully functional site.

2. Tripal does not make any new changes to the environment but the Chado Test bases do. Specifically, the add the
chado_installations table to the drupal schema and initialize TripalDBX in the test environment.

3. The code inside your tests setUp() method is run. The first thing that should be done in the setup for any test
interacting with chado is to intialize the chado database.

// Initialize the chado instance with all the records that would be present␣
→˓after running prepare.
$chado = $this->getTestSchema(ChadoTestBrowserBase::PREPARE_TEST_CHADO);

The capitalized portion indicates the type of chado to initialize. In the above example, PRE-
PARE_TEST_CHADO indicates the resulting chado schema will have all the records that would be present
after running prepare. The options available are:

• INIT_CHADO_EMPTY : creates an empty chado schema for testing. All tables are there but no
records.

• PREPARE_TEST_CHADO: creates a chado schema with all tables and all records that would be
present after running “prepare” through the UI.

• INIT_CHADO_DUMMY : creates a prepared chado schema with everything that PRE-
PARE_TEST_CHADO and with additional test data. You can see the test data here in tri-
pal_chado/tests/fixtures/fill_chado.sql

4. Finally your test method is called. Note: any services, plugins, etc. that you use here will only have the test
environment available. You will not have access to any data in your main site, nor should this long term affect
your main site. That said, we do not recommend running tests on production sites!

5. Once your test is complete, the tearDown()` method is called to clean the entire development environment up.
This includes dropping the development drupal tables including any changes made by your test.

118 Chapter 5. Extending Tripal

https://github.com/tripal/tripal/blob/4.x/tripal_chado/tests/fixtures/fill_chado.sql
https://github.com/tripal/tripal/blob/4.x/tripal_chado/tests/fixtures/fill_chado.sql

Tripal 4.x Documentation, Release 4.x.alpha.1

Retrieving the cvterm ID of a term in your test chado

Often in your setup you will be using Tripal DBX to insert records into your test chado instance. There is a handly
function to help you look up the cvterm_id based on the accession:

$idspace = 'SO';
$accession = '0000704';
$cvterm_id = $this->getCvtermID($idspace, $accession);

The above example retrieves the cvterm_id for the gene term in the test chado database.

Fields

For fields there are three main components to test:

1. That the data is created, loaded and updated appropriately from the backend data storage.

2. That the field classes match what is expected by the API and return the appropriate values.

3. That the edit form and page display perform as expected when rendered.

The first two lend themselves really well to kernel testing which is much faster than functional testing as it creates a
more focused and streamlined test environment. That said, kernel tests are not run with a fully functioning Drupal site,
but rather only specific functionality indicated by the test setUp is available. However, the third testing goal needs to
interact with a rendered Tripal Content page and thus a functional test is required.

For more information on how to test each of the above goals, see the following tutorials:

Testing Chado Field storage

Warning: This documentation is still under development and is not complete.

As described in the documentation for how to create fields, Chado Fields depend on the developer to define a number
of properties in order to describe to ChadoStorage how to create, load and update the various biological data associated
with that field. For example, when creating a field to describe the organism associated with a gene, you will define
properties for the genus, species, infraspecific type, infraspecific name, etc. Then ChadoStorage will use the property
definitions to pull these data out of Chado and make them available to your field. In this tutorial, we are focusing on
testing that the properties you defined in your field, act as you expect and that ChadoStorage is understanding your
intent properly.

Warning: All the following will assume you are developing these tests using the TripalDocker, with your module
fully installed and mounted within the docker. For instructions on how to set this up see Install with TripalDocker
documentation. In all the commands with CONTAINERNAME, replace it with the name of your container.

5.5. Automated Testing 119

Tripal 4.x Documentation, Release 4.x.alpha.1

Creating your testing Class

All tests are encapsulated within their own class as dictated by PHPunit. As such lets create a class skeleton as follows:

In [yourmodule]/tests/src/Kernel/Plugin/ChadoStorage create a file with a descriptive name for your test. We recom-
mend naming it using the following pattern [FieldName]Test.php. The “Test” suffix is required by PHPUnit so make
sure to at least include that in your test name or the test runner will not be able to find your test.

Here is a basic skeleton that you can copy/paste and replace the TOKENS with information for your own field:

<?php

namespace Drupal\Tests\YOURMODULE\Kernel\Plugin\ChadoStorage;

use Drupal\Tests\tripal_chado\Kernel\ChadoTestKernelBase;
use Drupal\Tests\tripal_chado\Traits\ChadoStorageTestTrait;
use Drupal\Tests\tripal_chado\Functional\MockClass\FieldConfigMock;

use Drupal\tripal\TripalStorage\StoragePropertyValue;
use Drupal\tripal\TripalStorage\StoragePropertyTypeBase;

/**
* Tests that ChadoStorage can handle property fields as we expect.
* The array of fields/properties used for these tests are designed
* to match those in the FIELDNAME field with values filled
* based on a CONTENTTYPE_VALID_FOR_THIS_FIELD content type.
*
* Note: We do not need to test invalid conditions for createValues() and
* updateValues() as these are only called after the entity has validated
* the system using validateValues(). Instead we test all invalid conditions
* are caught by validateValues().
*
* Specific test cases:
* - TEST CASE DESCRIPTION
*
* @group YOURMODULE
* @group Fields
* @group ChadoStorage
*/
class FIELDNAMETest extends ChadoTestKernelBase {

use ChadoStorageTestTrait;

// We will populate this variable at the start of each test
// with fields specific to that test.
protected $fields = [];

protected $yaml_file = __DIR__ . "/FIELDNAME-FieldDefinitions.yml";

/**
* {@inheritdoc}
*/
protected function setUp() :void {

(continues on next page)

120 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

parent::setUp();
$this->setUpChadoStorageTestEnviro();

$this->setFieldsFromYaml($this->yaml_file, "testNAMEOFTESTCASE");
$this->cleanChadoStorageValues();

// Any code needed to setup the environment for your tests.
// For example, you may need to insert records into the test chado
// here if your field links to existing records.

}

/**
* DESCRIBE YOUR TEST CASE HERE IN PLAIN ENGLISH.
*/
public function testNAMEOFTESTCASE() {

// PHPUnit complains if any test doesn't assert something.
// We will just assert a basic fact here to confirm our test class is
// setup properly.
$this->assertTrue(TRUE);

}
}

Now we will run our specific test in order to confirm that it is setup properly:

docker exec --workdir=/var/www/drupal9/web/modules/contrib/YOURMODULE \
CONTAINERNAME phpunit tests/src/Kernel/Plugin/ChadoStorage/FIELDNAMETest.php

This will only run the tests in the test file we just setup. If you see errors regarding missing classes, then check that you
have the use statements for those classes. If no test is found then make sure the class name matches the filename, the
classname ends in Test, and the method name starts with test.

I am going to walk you through creating a test for the ChadoContactDefault field in this tutorial so all future
code will show that case. You can see the finished test we are creating in the tripal/tripal Github repository: tri-
pal_chado/tests/src/Kernel/Plugin/ChadoStorage/ChadoContactDefaultTest.php file.

For example, if I were to complete the above instructions to create a tri-
pal_chado/tests/src/Kernel/Plugin/ChadoStorage/ChadoContactDefaultTest.php file containing the skeleton template
above and execute:

docker exec --workdir=/var/www/drupal9/web/modules/contrib/tripal tripal1587 \
phpunit tripal_chado/tests/src/Kernel/Plugin/ChadoStorage/ChadoContactDefaultTest.php

I would get the following output:

PHPUnit 9.6.10 by Sebastian Bergmann and contributors.

Testing Drupal\Tests\tripal_chado\Kernel\Plugin\ChadoStorage\ChadoContactDefaultTest
. 1 / 1 (100%)

Time: 00:05.203, Memory: 10.00 MB

OK (1 test, 6 assertions)

5.5. Automated Testing 121

https://github.com/tripal/tripal/blob/4.x/tripal_chado/tests/src/Kernel/Plugin/ChadoStorage/ChadoContactDefaultTest.php
https://github.com/tripal/tripal/blob/4.x/tripal_chado/tests/src/Kernel/Plugin/ChadoStorage/ChadoContactDefaultTest.php

Tripal 4.x Documentation, Release 4.x.alpha.1

You may find it helpful to include the –testdox –verbose parameters to phpunit when testing to obtain more verbose
output.

Defining the field instances to be tested

When a field is attached to a specific content type it is called a field instance. When testing fields, we work primarily
with a number of test field instances focused on specific content types.

In this example, the field we are testing relates contacts to many other Tripal content types. While most content types
have the same style linking table to the contact table, the arraydesign table has a different format. As such, the decision
was made to test one random content type (i.e. study) and the arraydesign content type to capture both linking table
variations. This is why in the following field instance definitions, you will see two instances: testContactFieldStudy
and testContactFieldArrayDesign. The names do not matter so you might as well be descriptive of their purpose. Just
ensure they do not contain spaces or special characters.

Field instances for testing are defined in a specific YAML format:

[test method which will be using the fields i.e. testNAMEOFTESTCASE]:
[field name]:
field_name: [field name]
base_table: [base table]
properties:
[property key]:
propertyType class: [full class name + namespace]
action: [action]
[additional key/value pairs associated with the action]

This YAML is stored in its own file in the same directory. In this case that would be tripal/tripal Github reposi-
tory: tripal_chado/tests/src/Kernel/Plugin/ChadoStorage/ChadoContactDefault-FieldDefinitions.yml file and this file
was referred to in the setup function of the test template.

Methods provided by ChadoStorageTestTrait

The following methods are provided by the test trait and can be used to make testing the functionality a lot easier:

• $this->chadoStorageTestInsertValues($insert_values): attempts to insert the values in the parameter for the spe-
cific field.

• $retrieved_values = $this->chadoStorageTestLoadValues($load_values): attempts to load the remaining values
specified by the few keys provided as parameters. ChadoStorage is given the values of all properties with dru-
pal_store being TRUE by Drupal itself so those keys are passed in here when testing. The retrieved values are
StoragePropertyValue objects so you need to use getValue() on them to retrieve the value loaded.

• $this->chadoStorageTestUpdateValues($update_values): attempts to update the values of existing chado records
to match the changes in the parameter.

You can see more details about how these are used to test in the finished ChadoContactDefaultTest test. There are also
a number of additional examples of this testing in the same directory.

122 Chapter 5. Extending Tripal

https://github.com/tripal/tripal/blob/4.x/tripal_chado/tests/src/Kernel/Plugin/ChadoStorage/ChadoContactDefault-FieldDefinitions.yml
https://github.com/tripal/tripal/blob/4.x/tripal_chado/tests/src/Kernel/Plugin/ChadoStorage/ChadoContactDefault-FieldDefinitions.yml
https://github.com/tripal/tripal/blob/4.x/tripal_chado/tests/src/Kernel/Plugin/ChadoStorage/ChadoContactDefaultTest.php

Tripal 4.x Documentation, Release 4.x.alpha.1

5.5.3 Additional Resources

• Official Drupal: Testing Documentation

• Official Drupal: PHPUnit file structure, namespace, and required metadata

• Official Drupal: Running PHPUnit Tests

• Official Drupal: PHPUnit Browser test tutorial

• Official Drupal: PHPUnit JavaScript test writing tutorial

• Drupal 8, 9, 10 Functional and Unit Testing (Automation Testing)

• Writing Automated Tests in Drupal 8, Part 4: Kernel tests

• Writing Automated Tests in Drupal 8, Part 3: Unit tests

• Drupal 8: Writing Your First Unit Test With PHPUnit

5.6 Hands-On Training

The following lessons provide hands-on training for various aspects of Tripal extension and module development. Each
lesson is designed to provide simple, concrete examples for how to accomplish a set of goals. They are not designed
to provide extensive background but rather will recommend other documentation for that purpose.

5.6.1 How to use Custom Tables in Chado

This lesson describes how to programmatically create and manage Custom Tables in Chado.

Warning: You should avoid making any changes to existing Chado tables as it could make upgrades to future
releases of Chado more difficult and could break functionality in Tripal that expects Chado tabes to be a certain
way. Instead, use custom tables!

Creating a Custom Table

To create a new custom table, you must first define the table schema which will include the table columns, constraints,
default values, and indexes. This design must then be written using the the Drupal Schema API, which is a PHP
associative array with key/value pairs that specify the components of the table. The following provides an example
table schema array for a custom library_stock table that is intended to link records in the stock table of Chado
with records in the library table of Chado:

[
'table' => 'library_stock',
'fields' => [

'library_stock_id' => [
'type' => 'serial',
'not null' => TRUE,

],
'library_id' => [

'type' => 'int',
'not null' => TRUE,

],
(continues on next page)

5.6. Hands-On Training 123

https://www.drupal.org/docs/testing
https://www.drupal.org/docs/testing/phpunit-in-drupal/phpunit-file-structure-namespace-and-required-metadata
https://www.drupal.org/docs/testing/phpunit-in-drupal/running-phpunit-tests
https://www.drupal.org/docs/testing/phpunit-in-drupal/phpunit-browser-test-tutorial
https://www.drupal.org/docs/automated-testing/phpunit-in-drupal/phpunit-javascript-test-writing-tutorial
https://gurinderpal.medium.com/drupal-8-9-10-functional-and-unit-testing-462993c3ce14
https://deninet.com/blog/2019/02/10/writing-automated-tests-drupal-8-part-4-kernel-tests
https://deninet.com/blog/2019/01/27/writing-automated-tests-drupal-8-part-3-unit-tests
https://www.axelerant.com/resources/team-blog/drupal-8-writing-your-first-unit-test-with-phpunit
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Database%21database.api.php/group/schemaapi/10

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

'stock_id' => [
'type' => 'int',
'not null' => TRUE,

]
],
'primary key' => [

'library_stock_id'
],
'unique keys' => [

'library_stock_c1' => [
'library_id',
'stock_id'
]

],
'indexes' => [

'name' => ['library_id', 'stock_id'],
],
'foreign keys' => [

'library' => [
'table' => 'library',
'columns' => [

'library_id' => 'library_id'
],

],
'stock' => [

'table' => 'stock',
'columns' => [

'stock_id' => 'stock_id'
]

]
]

]

Note that in the array structure above, the columns, primary keys, foreign keys, unique keys, and indexes for the table
are indicated.

The table can be created by calling the create() function of the Tripal Custom Table Service. To create the
library_stock table defined in the array above we would use the following:

// Get an instance of the Custom Table service.
/** @var \Drupal\tripal_chado\Services\ChadoCustomTableManager $ct_service **/
$ct_service = \Drupal::service('tripal_chado.custom_tables');

// Use the service to create the table object by providing it a name.
/** @var \Drupal\tripal_chado\ChadoCustomTables\ChadoCustomTable $custom_table **/
$custom_table = $ct_service->create('library_stock');

The code above will create an instance of a ChadoCustomTable object but it does not yet create the table in Chado.
To do that you must set the table schema in the following way:

// Provide the Schema API array defining the table structure.
$success = $custom_table->setTableSchema($schema);

In the code above, the $schema variable contains the Schema API array defined above. Calling setTableSchema()

124 Chapter 5. Extending Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

will automatically create the table in the Chado schema and return TRUE on success. If there are any errors in the
structure of the $schema array or any problems creating the table, messages will be logged to Drupal, the attempt will
fail and the function will return FALSE.

Locking a Custom Table

Tripal provides to the site developers an interface by which they can add custom tables. Site developers can see custom
tables in the interface which allows them to delete them, rename them or alter them. If you are adding a custom table
for use by your extension module and you do not want the site developers to alter it in any way, you can lock the table.
Non-custom Chado tables are not available for alteration and custom tables that are necessary for the functioning of a
module should not be either.

After creation of your custom table, you can lock the table from the site developers by calling the setLocked() function
on the ChadoCustomTable object and passing TRUE as the only argument.

$custom_table->setLocked(TRUE);

The Table ID

Every custom table in Tripal is given a unique ID. You can retreive this ID using the getTableId() function of the
ChadoCustomTable object:

$table_id = $custom_table->getTableId();

Later, you can find the ID of any custom table using its name by calling the findByName() function of the Tripal
Custom Table Service:

// Get an instance of the Custom Table service.
/** @var \Drupal\tripal_chado\Services\ChadoCustomTableManager $ct_service **/
$ct_service = \Drupal::service('tripal_chado.custom_tables');

$table_id = $ct_service->findByName('library_stock');

Finding Custom Tables

After custom tables are created, you will most likely want to work with them in other parts of your module. You will
need to have a ChadoCustomTable object anytime you want to work with a custom table. There are multiple ways
that you can find a table and get a ChadoCustomTable object for it: by ID, by name or by iterating through all custom
tables.

Load by ID

If you know the ID of the table you can get a ChadoCustomTable object by calling the loadById() function the
Custom Table Service:

// Get an instance of the Custom Table service.
/** @var \Drupal\tripal_chado\Services\ChadoCustomTableManager $ct_service **/
$ct_service = \Drupal::service('tripal_chado.custom_tables');

$custom_table = $ct_service->loadById($table_id);

5.6. Hands-On Training 125

Tripal 4.x Documentation, Release 4.x.alpha.1

In the code above, the $table_id argument would store the known ID of the table. The $custom_table variable is
now a ChadoCustomTable object that can be used to work with the table.

Load by Name

Custom table names should be unique. So, if you only know the table name, you can get a ChadoCustomTable object
using the loadbyName() function of the Chado Custom Table Service.

// Get an instance of the Custom Table service.
/** @var \Drupal\tripal_chado\Services\ChadoCustomTableManager $ct_service **/
$ct_service = \Drupal::service('tripal_chado.custom_tables');

$custom_table = $ct_service->loadbyName('library_stock');

Getting a List of Custom Tables

If you need to get a list of existing custom tables, you can retrieve the names and IDs by calling the getTables()
function of the Tripal Custom Tables Service;

// Get an instance of the Custom Table service.
/** @var \Drupal\tripal_chado\Services\ChadoCustomTableManager $ct_service **/
$ct_service = \Drupal::service('tripal_chado.custom_tables');

$custom_tables = $ct_service->getTables();

In the code above, the $custom_tables variable will be an associative array where the keys are the table IDs and the
values the table names for all custom tables.

Deleting a Custom Table

You can delete a custom table by calling the delete() function on the ChadoCustomTable object. You must know
the table ID or the table name to do so. Here is example code using the table name:

// Get an instance of the Custom Table service.
/** @var \Drupal\tripal_chado\Services\ChadoCustomTableManager $ct_service **/
$ct_service = \Drupal::service('tripal_chado.custom_tables');

$custom_table = $ct_service->loadbyName('library_stock');
$custom_table->delete();

Changing a Custom Table

Suppose you have created a custom table for your module and released the module for others to use. Later you recognize
you need to make changes to the custom table for improved functionality. To make changes to the table occur seamlessly
for everyone who uses your module, you should create an update hook function in your module’s .install file. Within
the update hook function you should perform the following:

• Create a new version of the table.

• Copy the data from the old table.

• Delete the old table.

126 Chapter 5. Extending Tripal

https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/10

Tripal 4.x Documentation, Release 4.x.alpha.1

• Update your module to use the new table.

Then, when your module is upgraded on a Drupal site to the next version, the table changes will happen automatically.

Using the Custom Table

After the custom table has been created you can use it the same as any other table in Chado. You can find examples for
interacting with Chado tables in the Tripal DBX: Generic cross database support for Drupal.

5.6. Hands-On Training 127

Tripal 4.x Documentation, Release 4.x.alpha.1

128 Chapter 5. Extending Tripal

CHAPTER

SIX

UPGRADING TRIPAL

6.1 Upgrading a Tripal 3 site

The upgrade path is still under development. More information will be added here as it becomes available.

What we know so far:
• Upgrading from Drupal 7 to 8+ requires a migration.

– This means you will create a local copy of your current Drupal 7 site, a new Drupal 8+ site and then use
the Drupal Migration module to transfer your data from the Drupal 7 site to the new Drupal 8 one.

– This process ensures unused or old configuration from previous upgrades is not transferred to your new
site.

– More information can be found here: Upgrading from Drupal 6 or 7 to Drupal 8 (and newer)

– Drupal has provided the following documentation to prepare for a migration: How to prepare your Drupal
7 or 8 site for Drupal 9

• Upgrading from Tripal 3 to 4 will also use the Drupal migration functionality.

• Only Chado 1.3 will be supported in Tripal 4 so you need to upgrade Chado first.

• No re-loading or changing of Chado data will be required by the migration.

6.2 Upgrading an Extension Module

This page provides useful short snippets of code to help module developers upgrade their Tripal v3 compatible modules
to work with Drupal 10. This list is not comprehensive or complete, but is meant to be an aid.

6.2.1 tripal_set_message() and tripal_report_error()

These functions have been upgraded and thus can be used as is. However, the new way is to use a logger service. For
example:

$logger = \Drupal::service('tripal.logger');
$logger->notice('Hello world');
$logger->error('Hello world');

For more detailed information see the Tripal Logger documentation.

129

https://www.drupal.org/docs/upgrading-drupal/upgrading-from-drupal-6-or-7-to-drupal-8-and-newer
https://www.drupal.org/docs/upgrading-drupal/how-to-prepare-your-drupal-7-or-8-site-for-drupal-9
https://www.drupal.org/docs/upgrading-drupal/how-to-prepare-your-drupal-7-or-8-site-for-drupal-9

Tripal 4.x Documentation, Release 4.x.alpha.1

6.2.2 drupal_set_message()

Changelog: https://www.drupal.org/node/2774931

use Drupal\Core\Messenger\MessengerInterface;
// if not set by constructor...
$this->messenger = \Drupal::messenger();

// Add specific type of message within classes.
$this->messenger->addMessage('Hello world', 'custom');
$this->messenger->addStatus('Hello world');
$this->messenger->addWarning('Hello world');
$this->messenger->addError('Hello world');

// In procedural code:
$messenger = \Drupal::messenger();
$messenger->addMessage('Hello world', 'custom');
$messenger->addStatus('Hello world');
$messenger->addWarning('Hello world');
$messenger->addError('Hello world');

6.2.3 format_date()

\Drupal::service('date.formatter')->format($time);

6.2.4 Loading a User Object

To load a user using a known user ID.

// Load a user with a known UID in the $uid variable.
$user = \Drupal\user\Entity\User::load($uid);

To get the current user:

$current_user = \Drupal::currentUser();
$user = \Drupal\user\Entity\User::load($current_user->id());

6.2.5 Creating Links

To create HTML links the Drupal 7 was was:

$link = l('Administration', '/admin')

The Drupal 10 approach is:

use Drupal\Core\Link;
use Drupal\Core\Url;

$link = Link::fromTextAndUrl('Administration', Url::fromUri('internal:/admin'))

Using Links in drupal_set_message:

130 Chapter 6. Upgrading Tripal

https://www.drupal.org/node/2774931

Tripal 4.x Documentation, Release 4.x.alpha.1

$jobs_url = Link::fromTextAndUrl('jobs page',
Url::fromUri('internal:/admin/tripal/tripal_jobs'))->toString();

drupal_set_message(t("Check the @jobs_url for status.",
['@jobs_url' => $jobs_url]));

6.2.6 Database Queries

db_query

The db_query function is deprecated in Drupal 9. To perform a database query you will need to rework any calls to the
db_query function in the following way:

// Get the database object.
$database = \Drupal::database();

// Perform the query by passing the SQL statement and arguments.
$query = $database->query($sql, $args);

// Get the result(s).
$job = $query->fetchObject();

drupal_write_record

The drupal_write_record was useful in Drupal 7 for directly working with tables that Drupal was aware of. Here’s the
replacement:

$database = \Drupal::database();
$num_updated = $database->update('tripal_jobs')

->fields([
'status' => 'Cancelled',
'progress' => 0,

])
->condition('job_id', $this->job->job_id)
->execute();

6.2.7 Views

The hook_views_data() function

The hook_views_data function is used to expose tables within Drupal to the Drupal Views. The function returns an
array that defines how tables can be handled by Views. Fortunately, this is mostly backwards compatible and you can
keep the function as is. However, you will need to make the following changes:

1. Where handlers are defined for the field, filter, sort, relationship, argument you must change the key handler to
id.

2. Handler names are now just a single word. The following table provides some common name changes.

6.2. Upgrading an Extension Module 131

Tripal 4.x Documentation, Release 4.x.alpha.1

Handler Type D7 Handler Function D8/9 Handler ID
field views_handler_field standard (strings)

views_handler_field_numeric numeric
views_handler_field_date date

filter views_handler_filter_numeric numeric
views_handler_filter_string string
views_handler_filter_date date

sort views_handler_sort standard (strings)
views_handler_sort_date date

argument views_handler_argument_string string
views_handler_argument_date date

relationship views_handler_relationship standard

You can find additional handlers at these API pages:

• Fields

• Filters

• Sort

• Arguments

• Relationships

The hook_views_default_views() function

In Drupal v7 this function was used to provide the set of views that you would like the end-user to see automatically
when the module is installed. This function is no longer used neither is the <modulename>.views_default.inc file where
this hook would be stored. Instead the default views are provided in YML format.

Step 1: Create the View: To recreate any views that your module provided in Drupal 7, you must recreate the View
using the Views UI interface. No coding is required.

Step 2: Export the View: Once the view has been recreated, you can export the YML for the view by navigating
to Admin >> Configuration >> Configuration Synchronization. Click the Export tab at the top, then click
the single item link below the tab. In the page that appears you should then select View from the Configuration
type dropdown and then select the name of the view you want to export. The YML code for the selected view will
appear in the textarea below. The screenshot below shows an example:

132 Chapter 6. Upgrading Tripal

https://api.drupal.org/api/drupal/core%21modules%21views%21src%21Plugin%21views%21field%21FieldPluginBase.php/group/views_field_handlers/9.0.x
https://api.drupal.org/api/drupal/core%21modules%21views%21src%21Plugin%21views%21filter%21FilterPluginBase.php/group/views_filter_handlers/9.0.x
https://api.drupal.org/api/drupal/core%21modules%21views%21src%21Plugin%21views%21sort%21SortPluginBase.php/group/views_sort_handlers/9.0.x
https://api.drupal.org/api/drupal/core%21modules%21views%21src%21Plugin%21views%21argument%21ArgumentPluginBase.php/group/views_argument_handlers/9.0.x
https://api.drupal.org/api/drupal/core%21modules%21views%21src%21Plugin%21views%21relationship%21RelationshipPluginBase.php/group/views_relationship_handlers/9.0.x

Tripal 4.x Documentation, Release 4.x.alpha.1

Step 3: Create the View YML file: Once you have the YML code for the view, you must create a new file named
views.view.<view_name>.yml and place the code inside of it. Where <view_name> is the machine name of the view.
You can safely remove the first uuid line. This file must be placed in the config/install directory of your module.

Step 4: Reinstall the Module: In order for Drupal Views to see this new view you must reinstall the module.

Embed a View on a Page

In Drupal v7 you could embed a view onto any page by using code similar to the following

$view = views_embed_view('tripal_admin_jobs', 'default');

In Drupal 8 use code similar to the following to embed a view on a page:

$view = \Drupal\views\Views::getView('tripal_jobs');
$view->setDisplay('default');
if ($view->access('default')) {
return $view->render();

}
else {
return [

(continues on next page)

6.2. Upgrading an Extension Module 133

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

'#markup' => 'You do not have access to view this page.',
];

}

6.2.8 Attaching CSS

In Drupal 10 CSS files are part of “libraries”. Libraries are groups of “assets” such as CSS, JS, or other resources needed
for a particular set of pages that the module provides. Libraries are defined in the <module_name>.libraries.yml file.
For information about preparing your CSS files with drupal see the page about adding css and js files to a module. Once
the CSS is setup correctly, you want to add “libraries” to pages that use them. This is done by adding an ‘#attached’
element to the render array returned by a page using the following form:

'#attached' => [
'library' => ['<module_name>/<library_name>'],

]

Replace <module_name> and <library_name> with appropriate values.

134 Chapter 6. Upgrading Tripal

https://www.drupal.org/node/2274843

CHAPTER

SEVEN

CONTRIBUTING TO CORE TRIPAL

The following guidelines are meant to encourage contribution to Tripal source-code on GitHub by making the process
open, transparent and collaborative. If you have any feedback including suggestions for improvement or constructive
criticism, please comment on the Github issue. These guidelines apply to everyone contributing to Tripal whether
it’s your first time (Welcome!) or project management committee members.

Note: These guidelines are specifically for contributing to Tripal. However, we encourage all Tripal extension modules
to consider following these guidelines to foster collaboration among the greater Tripal Community.

Note: Guidelines serve as suggestions (should) or requirements (must). When the word “should” is used in the text
below, the stated policy is expected but there may be minor exceptions. When the word “must” is used there are no
exceptions to the stated policy.

7.1 Guidelines for Contribution to Tripal

The following guidelines are meant to encourage contribution to Tripal source-code on GitHub by making the process
open, transparent and collaborative. If you have any feedback including suggestions for improvement or constructive
criticism, please comment on the Github issue. These guidelines apply to everyone contributing to Tripal whether
it’s your first time (Welcome!) or project management committee members.

Note: These guidelines are specifically for contributing to Tripal. However, we encourage all Tripal extension modules
to consider following these guidelines to foster collaboration among the greater Tripal Community.

Note: Guidelines serve as suggestions (should) or requirements (must). When the word “should” is used in the text
below, the stated policy is expected but there may be minor exceptions. When the word “must” is used there are no
exceptions to the stated policy.

135

https://github.com/tripal/tripal/issues/344
https://github.com/tripal/tripal
https://github.com/tripal/tripal/issues/344
https://github.com/tripal/tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

7.1.1 Github Communication Tips

• Don’t be afraid to mention people (@username) who are knowledgeable on the topic or invested. We are aca-
demics and overcommitted, it’s too easy for issues to go unanswered: don’t give up on us!

• Likewise, don’t be shy about bumping an issue if no one responds after a few days. Balancing responsibilities is
hard.

• Want to get more involved? Issues marked with “Good beginner issue” are a good place to start if you want to
try your hand at submitting a PR.

• Everyone is encouraged/welcome to comment on the issue queue! Tell us if you
– are experiencing the same problem

– have tried a suggested fix

– know of a potential solution or work-around

– have an opinion, idea or feedback of any kind!

• Be kind when interacting with others on Github! (see Code of Conduct below for further guidelines). We
want to foster a welcoming, inclusive community!

– Constructive criticism is welcome and encouraged but should be worded such that it is helpful :-) Direct
criticism towards the idea or solution rather than the person and focus on alternatives or improvements.

7.1.2 Pull Request (PR) Guideline

The goal of this document is to make it easy for A) contributors to make pull requests that will be accepted, and B)
Tripal committers to determine if a pull request should be accepted.

• PRs that address a specific issue must link to the related issue page.
– In almost every case, there should be an issue for a PR. This allows feedback and discussion before the

coding happens. Not grounds to reject, but encourage users to create issues at start of their PR. Better
late than never :).

• PRs must be left unmerged for 3 weekdays to give core developers a chance to learn from each other and provide
any feedback. Larger or particularly important/interesting PRs should be announced in the Slack #core-dev
channel.

• PRs must describe what they do and provide manual testing instructions.

• PRs must not use any functions deprecated in the currently supported version of Drupal.

• PRs that include new functionality must also provide Automated Testing.
– A PR should not reduce the overall test coverage of the repository. Code Climate will comment on your

PR with the total coverage in the repository and include the change caused by your PR. This change
must not be negative.

–

136 Chapter 7. Contributing to Core Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

• PRs must pass all automated testing marked as “Required” at the bottom of the PR.

• Branches must follow the following format:
– tv4g[0-9]-issue\d+-[optional short descriptor]

– See the shared repository documentation for more details.

• Should follow Drupal code standards

How to create a PR

There are great instructions on creating a PR on Digital Ocean: How To Create a Pull Request on GitHub.

The tl;dr version:
1. Fork the repository or update an existing fork

2. Clone the fork

3. Create a branch specific to your change: tv4g[0-9]-issue\d+-[optional short descriptor]

4. Make your changes, committing often with useful commit messages.

5. Push your changes to your fork.

6. Create a PR by going to your fork: target should be tripal:4.x. For specifics, see guidelines above.

7.2 Code of Conduct

Be nice!

If that’s insufficient, Tripal community defers to the Contributors Covenant which is included below.

7.2.1 Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste,
colour, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behaviour that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

7.2. Code of Conduct 137

https://www.drupal.org/docs/develop/standards
https://www.digitalocean.com/community/tutorials/how-to-create-a-pull-request-on-github
https://docs.github.com/en/github/getting-started-with-github/fork-a-repo
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/docs/git-commit#_examples
https://git-scm.com/docs/git-push#_examples
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request-from-a-fork
https://www.contributor-covenant.org/version/2/1/code_of_conduct/

Tripal 4.x Documentation, Release 4.x.alpha.1

Examples of unacceptable behaviour include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behaviour and will take
appropriate and fair corrective action in response to any behaviour that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behaviour may be reported to the community leaders respon-
sible for enforcement at [INSERT CONTACT METHOD]. All complaints will be reviewed and investigated promptly
and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction
Community Impact: Use of inappropriate language or other behaviour deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behaviour was inappropriate. A public apology may be requested.

2. Warning
Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behaviour. No interaction with the people involved, in-
cluding unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

3. Temporary Ban
Community Impact: A serious violation of community standards, including sustained inappropriate behaviour.

138 Chapter 7. Contributing to Core Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behaviour, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available at https://www.
contributor-covenant.org/version/2/1/code_of_conduct/.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ. Translations are available on the Contributor
Covenant website.

7.3 Shared Repository Management

This section describes the current guidelines for committing to the shared Tripal repository. These rules help keep the
repository an organized place to work.

7.3.1 Branch Naming Conventions

tv4g[0-9]-issue\d+-[optional short descriptor]

Where,
• tv4g[0-9] indicates the roadmap group the branch relates to. You can see the listing of groups here.

• issue\d+ indicates the issue describing the purpose of the branch. By making a new issue for each major
task before we start working on it, we give room for others to jump in and save you time if something is
already done, beyond scope, or can be made easier by something they are working on!

• [optional short descriptor] can be anything without spaces. This is meant to make the branches
more readable so we don’t have to look up the issue every time. You are encouraged to only have one
branch per issue! That said, there are some edge-cases where multiple branches may be needed (i.e.
partitioned reviews) where variations in the optional short description can make the purpose of multiple
branches clear.

7.3. Shared Repository Management 139

https://www.contributor-covenant.org/
https://www.contributor-covenant.org/version/2/1/code_of_conduct/
https://www.contributor-covenant.org/version/2/1/code_of_conduct/
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations
https://www.contributor-covenant.org/translations
https://github.com/tripal/tripal/labels?q=GROUP

Tripal 4.x Documentation, Release 4.x.alpha.1

7.3.2 Outdated Branches

It is important to only keep branches that you are actively working on.
Branches should be deleted as soon as a pull request (PR) has merged them into the main branch.

Unable to Finish

If you simply do not have time to finish the issue associated with a branch, please do the following:

1. Communicate that in the issue. We all understand that academia is a constantly shifting world of priorities! There
is no need to justify the change but we do really appreciate the following:

• describing where you are currently at progress-wise

• any difficulties or concerns to ran up against

• what your plan or design were

2. Make sure all your code is committed, pushed to GitHub and add the last commit hash to your description in the
above step. This allows us to recover your branch in case anything goes wrong with the patch created in the next
step.

3. Create a patch capturing your current progress and attach that to the corresponding issue. See “How to Save
Progress from a Branch” below for detailed instructions.

4. Unless someone has said they will take over the work within the next week, please delete the associated branch.

Other Reasons for Abandoning a Branch

If you find that you have to switch gears, try a new approach or otherwise abandon an open branch, please do the
following:

1. Make sure all your code is committed, pushed to GitHub and add the last commit hash to the issue associated
with the branch. This allows us to recover your branch in case anything goes wrong with the patch created in the
next step.

2. Create a patch capturing the changes in that branch and attach the patch file to the associated issue for the branch.
See “How to Save Progress from a Branch” below for detailed instructions.

3. Include your reasoning for abandoning the branch in the issue associated with it. This does not have to be long
but should be enough for anyone to understand your reasoning without needing to talk to you.

4. Delete the branch.

How to Save Progress from a Branch

1. Make sure all your code is committed and pushed to GitHub.

2. Go to our repository on GitHub and select your branch from the drop-down list on the left side to switch to that
branch.

140 Chapter 7. Contributing to Core Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

3. Click on “Contribute” on the right side and then “Compare”.

4. Add .patch to the end of the URL. . .

7.3. Shared Repository Management 141

Tripal 4.x Documentation, Release 4.x.alpha.1

and click enter to see a text patch of all the changes. This will include any new files as well as smaller
changes within existing files. Furthermore, it includes attribution to you to ensure that if this work is used
in the future, you get credit for it.

5. Use your browser to save this page as a file and attach it to the issue by dragging it into the text area.

142 Chapter 7. Contributing to Core Tripal

Tripal 4.x Documentation, Release 4.x.alpha.1

How to Recover an Previously Deleted Branch

1. Checkout the main branch and pull all changes.

2. Checkout the last commit made in the branch to be recovered. This commit hash should be recorded in the issue
comments from when the branch was deleted.

git checkout COMMITHASH

3. Create a new branch pointing to that commit. This branch should follow the naming conventions above.

git branch RECOVERED-BRANCH-NAME

4. Push the new branch to GitHub and carry on like the branch was never deleted!

7.4 Creating a Docker for Testing

This section describes the procedure to create and run a docker container from a specific branch from the Tripal repos-
itory. This is helpful for testing your own proposed changes, or testing another contributor’s proposed changes, since
the full install process will be performed on the branch.

7.4.1 Testing on the most current development version

If you just want to test functionality of the current development version of Tripal, you can build a docker container
as described in the Docker Quickstart section. If you need specific software versions or a specific branch, continue
reading below.

7.4.2 Testing on an unmerged branch

1. Install Docker for your system.

2. Change to a suitable working directory on your local test system.

3. Clone the most recent version of Tripal 4, keeping track of where you cloned it. To keep things organized, you
may want to include the issue number, in these examples it is 9999:

git clone https://github.com/tripal/tripal tripal-9999
cd tripal-9999

4. If you want to contribute to core, you always want to make a new branch, do not work directly on the 4.x branch.
Use following naming convention for branches: tv4g[0-9]-issue\d+-[optional short descriptor].

• tv4g[0-9] indicates the functionality group the branch relates to. See tags for groups available.

• issue\d+ indicates the issue describing the purpose of the branch. By making a new issue for each
major task before we start working on it, we give room for others to jump in and save you time if
something is already done, beyond scope, or can be made easier by something they are working on!

• [optional short descriptor] can be anything without spaces. This is meant to make the
branches more readable so we don’t have to look up the issue every time. You are encouraged to
only have one branch per issue! That said, there are some edge-cases where multiple branches may
be needed (i.e. partitioned reviews) where variations in the optional short description can make the
purpose of multiple branches clear.

Example for creating a new branch for creating a new field. Base your new branch on the main 4.x branch:

7.4. Creating a Docker for Testing 143

https://docs.docker.com/get-docker

Tripal 4.x Documentation, Release 4.x.alpha.1

git checkout 4.x
git branch tv4g1-issue1414-some_new_field
git checkout -b tv4g1-issue1414-some_new_field

Or if you want to test an unmerged pull request, it will be associated with a particular branch. You will see
the branch name on the GitHub page for that pull request. Use this branch name in the following procedure.
For example, it may appear as

git checkout -b tv4g1-issue1449-chadostorage-linkertables

If the contributor’s branch is in their own repository, checking it out will be slightly different, you will
need to include the pull request number. For example, for pull request #1535:

git fetch origin pull/1535/head:tv4g2-issue1534-chadoCvtermAutocompleteUpdate

5. We will now build the docker image, this takes a bit of time to complete. You may want to specify a particular
Drupal version, PHP version, or PostgreSQL version. The PHP version is part of the docker file name, the other
versions are specified through the --build-arg parameters. For example:

sudo docker build --tag=tripaldocker:testing-9999 --build-arg drupalversion=
→˓"10.2.x-dev" --build-arg postgresqlversion="15" --file tripaldocker/
→˓Dockerfile-php8.3 ./

6. We will now create a running docker container using the image we just built. We will map the web port 80 to
a value available on the local test system. For example, we will select port 8080:

sudo docker run --publish=8080:80 -tid --name=testing-9999 --volume=$(pwd):/
→˓var/www/drupal9/web/modules/contrib/tripal tripaldocker:testing-9999

7. And finally we need to start up our PostgreSQL database inside the docker container.

sudo docker exec testing-9999 service postgresql restart

8. The Tripal site should now be available to evaluate at http://localhost:8080 or whatever other port number you
selected.

For more details about TripalDocker including the site administrator login information and more usage commands
see the install Tripal using Docker usage section.

9. If you need a shell inside the docker, such as to run a drush command, use

sudo docker exec -it testing-9999 /bin/bash

10. If at some point you reboot your test system, you can restart this docker container with:

sudo docker start testing-9999
sudo docker exec testing-9999 service postgresql restart

11. Listing existing containers, include -a to show containers that are not running.

sudo docker ps -a
CONTAINER ID IMAGE COMMAND CREATED ␣

(continues on next page)

144 Chapter 7. Contributing to Core Tripal

http://localhost:8080

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

→˓STATUS PORTS ␣
→˓ NAMES
9e29c051c2ed tripalproject/tripaldocker:latest "init.sh" 2 hours ago ␣
→˓Up 2 hours 5432/tcp, 9003/tcp, 0.0.0.0:8080->80/tcp, :::8080->
→˓80/tcp t4
2f7575fe3940 tripaldocker:testing-9999 "init.sh" 3 days ago ␣
→˓Exited (137) 2 days ago ␣
→˓ 9999

11. Listing existing images.

sudo docker images
REPOSITORY TAG IMAGE ID CREATED ␣
→˓SIZE
tripaldocker testing-9999 6b09ee09dd54 29 minutes ago 1.
→˓61GB

12. Cleanup. Stopping the docker container.

sudo docker stop testing-9999

13. Deleting the docker container and image when you are done with it.

sudo docker rm testing-9999
sudo docker rmi tripaldocker:testing-9999

7.4. Creating a Docker for Testing 145

Tripal 4.x Documentation, Release 4.x.alpha.1

146 Chapter 7. Contributing to Core Tripal

CHAPTER

EIGHT

DESIGN DOCUMENTATION

This is the location for active development of Software Design Documentation (SDD) for Tripal v4. This document is
managed by the Tripal Project Management Committee (PMC) but authorship contributions are welcome by anyone
involved in core Tripal 4 development.

8.1 Design Overview

8.1.1 Authors

Design Document Authors

The following individuals are primary authors of this document (in alphabetical order). However, contributions are
welcomed by anyone.

• Sean Buehler

• Stephen Ficklin

• Lacey Sanderson

Tripal v4 Developers

The following individuals are currently contributing to active development of Tripal v4 (in alphabetical order):

• Sean Buehler

• Josh Burns

• Stephen Ficklin

• Valentin Guignon

• Rish Ramnath

• Lacey Sanderson

• Douglas Senalik

We would also like to acknowledge the assistance of other individuals who have contributed to Tripal v4 through various
pull requests and activity at Tripal Codefests. The full list of contributors is found here.

147

https://github.com/Ferrisx4
https://github.com/spficklin
https://github.com/laceysanderson
https://github.com/Ferrisx4
https://github.com/4ctrl-alt-del
https://github.com/spficklin
https://github.com/guignonv
https://github.com/risharde
https://github.com/laceysanderson
https://github.com/dsenalik
https://github.com/tripal/tripal/graphs/contributors

Tripal 4.x Documentation, Release 4.x.alpha.1

8.2 Module + File Structure

Tripal is a package of multiple Drupal modules (currently 4) with common documentation meant to be used together.
We separate our code into multiple modules to allow site developers to choose the functionality they want and to
improve maintainability. All modules require the base Tripal module but all others should be independent of each
other completely and the base Tripal module should be able to be used alone.

• tripal: contains all generic Tripal functionality with a focus on APIs + Vocabularies, and Entities.

• tripal_chado: implements APIs in the tripal folder with specifics for supporting Chado. Additionally, this
includes many data importers and eventually fields, as well as, Chado-specific APIs.

• tripal_console: Tripal implementations of Drupal Console commands. This is focused on making the devel-
opment of Tripal easier and is meant to include commands for generating Tripal/Chado plugin files and re-writing
Tripal 3 field classes in the new Tripal 4 way. Note: Drush commands are still used for the administration of
Tripal and should go in the appropriate submodule.

• tripaldocker: Provides a Docker image currently focused on Tripal development. There is a plan to make this
a production-ready Docker image in the future.

• docs: contains our official Tripal 4 ReadtheDocs documentation.

• .github: contains GitHub-specific files such as our testing workflow/actions.

• .gitignore: includes patterns for files that should not be committed to our repository using git.

• composer.json: described our PHP package to Packagist using Composer.

• composer.lock: formed when you install Tripal using composer and keeps track of any dependencies. We
commit it so you can see versions of dependencies tests were last run using.

• phpunit.xml: our PHPUnit test configuration.

• README.md: our face to the developer community and the best place to start.

8.3 Controlled Vocabulary Design

Tripal is very ontology-focused with public terms forming the basis of our content types and fields. This sets us up to
support (1) rich semantic web ready web services, (2) detailed definitions for all content displayed to the user, and (3)
intuitive and powerful search filters and facets.

The following figure provides an example of the relationships between Vocabularies, ID Spaces, and Terms in Tripal:

148 Chapter 8. Design Documentation

https://drupalconsole.com/docs/ro/commands/
https://www.drush.org/latest/
https://www.docker.com/
https://tripaldoc.readthedocs.io/en/latest/
https://github.com/tripal/tripal/actions
https://packagist.org/packages/tripal/tripal
https://getcomposer.org/
https://phpunit.readthedocs.io

Tripal 4.x Documentation, Release 4.x.alpha.1

In order to model the above relationships, we developed the following design:

• Vocabularies are collections of ID spaces that are stored using implementations of the Tripal Vocabulary Plugin
Type.

• ID spaces are collections of Tripal Terms tied to a single vocabulary that are stored using implementations of the
Tripal ID Space Plugin Type.

• Terms will not be plugins and their storage will be handled by their ID Space.

We used the Drupal Plugin API to make it easy to provide different storage backends for controlled vocabularies.

For more in-depth documentation on this design, check out the following pages:

8.3.1 Design Requirements

The following are the requirements we took into account for our design. Please let us know if you have requirements
not listed in the document.

1. Support multiple data backends

A theme with Tripal 4 is flexible storage for data. We want to ensure our design for vocabularies supports Chado but
also has flexibility to be extended (e.g. use Drupal database, graph database, multiple schema in Chado). We also want
to make it easier to create custom storage backends than it was in Tripal 3.

8.3. Controlled Vocabulary Design 149

Tripal 4.x Documentation, Release 4.x.alpha.1

2. Performance

Vocabularies and their terms are central to the organization of biological data in Tripal 4. We are focusing on perfor-
mance to reduce barriers to using vocabulary terms extensively throughout your content.

3. Support borrowing terms from existing vocabularies

As the available terms increases, we are seeing new ontologies choosing to borrow terms from existing ontologies.
As described in Chado#68, Chado has difficulties storing these relationships. We want to ensure that our design takes
borrowed terms into account in a Chado agnostic way.

4. Model vocabularies intuitively

Chado’s storage of vocabularies can be a little confusing and not ideal (e.g. Chado#68). As such we want to design
Tripal vocabularies independent of Chado and their storage in general. Specifically, we want to bring in the concept of
ID Spaces as described in the OBO Format v1.4.

8.3.2 File Structure

The base structure of this API is found in tripal/src/TripalVocabTerms/. Specifically, you can find

• The TripalTerm class.
• The base classes to extend when making your own vocabulary plugin implementation.

• The interfaces you should implement are in the Interface directory and describe the methods you must implement
in your vocabulary plugin implementation.

• The annotation classes describe the metadata needed in the comment header of your implemented plugin class.

• The plugin managers are in the PluginManager directory and simply link these plugins to the Drupal API.

150 Chapter 8. Design Documentation

https://github.com/GMOD/Chado/issues/68
https://github.com/GMOD/Chado/issues/68
https://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html

Tripal 4.x Documentation, Release 4.x.alpha.1

Warning: Core Implementations for the vocabulary and id space plugins are still underway. The design base is in
the main branch but work is not complete.

All implementations should be in the src/Plugin/TripalIdSpace and src/Plugin/TripalVocabulary di-
rectory of their respective modules. For example, a Chado implementation would be in tripal_chado/src/
Plugin/TripalVocabulary/ChadoVocabulary.php and tripal_chado/src/Plugin/TripalIdSpace/
ChadoIdSpace.php. You do not need to implement the TripalTerm class as all storage is handled by the vocabulary
or ID space containing a given term.

8.4 Design and Coding Standards

8.4.1 Contributing to Design

We welcome anyone who would like to contribute to the Tripal v4 Design. The following policies should be followed
by everyone contributing:

Verbal Communication

When verbal communication is necessary to work out a details, designers can meet in the following ways:

• Mondays between 16:00-18:00 UTC is the Tripal Developer Meeting in GatherTown. Join the Tripal Slack to
get information to join these meetings.

• Zoom or Slack: currently anyone working with the design team can create impromptu scheduled meetings. These
only last as long or as often as the designers need. Reach out to those working on a particular item if you are
interested in participating.

Design Documentation Standards

Organization

All documentation for Tripal v4 design can be found either throughout the Developers Guide or in Design In Progress.

Designs that are in active preparation should be found in the Design In Progress section. Docs that have been approved
by the PMC are incorporated throughout the main documentation.

How to Contribute Design Documents

Adding New Designs

All design documentation must first be added to the Design In Progress section. Anyone working on the design can do
so. To propose a pending design:

1. Clone or fork the tripal repository.

2. Create a new branch for your design.

3. Design documentation is housed in the docs/design folder.

4. Only add new documentation into the docs/design/pending folder. If you are unsure where to add your contribu-
tions please ask.

8.4. Design and Coding Standards 151

https://tripal-project.slack.com/join/shared_invite/zt-590q4q2f-YlO6xn7ri5UiCUZVx9M_lg#/shared-invite/email

Tripal 4.x Documentation, Release 4.x.alpha.1

5. Follow RST markup.

6. Use the consistent RST headers as found in other design documents.

7. Once you have added your documentation, you can submit a pull request for the 4.x branch.

8. Pending design do not need PMC review and can be immediately merged. However, the act of creating a pull
request alerts the PMC that documentation is being prepared.

Warning: While you may start implementation of your design prior to formal approval by the PMC please re-
member that the PMC must approve all designs and the implementation of a design must match the documentation
for full inclusion of new code into Tripal 4. For this reason, it is recommended to wait on implementation until the
PMC has fully reviewed any design you submit.

Submitting Designs

The PMC must approve all pending design documentation for it to be officially part of the Tripal v4 design. Designs
that get approved are moved into the core documentation. These designs can still be altered but are now considered
“official”. To submit a pending design do the following:

1. Move your documentation from the docs/design/pending section to the Developers Guide (i.e. within
docs/dev_guide). Ask if you are unsure of where to place it.

2. Submit a pull request requesting review by the PMC.

3. The pull request must stay in the queue for at least 2 days to allow for comment by the community. This is to
allow others to have a say if they feel the design is lacking.

4. The PMC merge the pull request if the design passes review or suggest changes if needed.

Note: Members of the PMC who are involved in design development will also adhere to the rules for submitting
designs for approval in order to allow the community to comment and to support transparency.

Formatting Design Documentation

Structure of the Document

Headers

Use the following for headers

• # Page Titles

• =, for sections

• -, for subsections

• ^, for sub-sub sections

• ", for sub-sub-subsections

152 Chapter 8. Design Documentation

https://sublime-and-sphinx-guide.readthedocs.io/en/latest/index.html

Tripal 4.x Documentation, Release 4.x.alpha.1

8.5 Design In Progress

8.5.1 Entities and Fields Design

This design document is attempting to describe our current design process for Entities and Fields in Tripal 4 utilizing
the new Drupal 10 APIs.

Entity/Field Design Summary

Note: The names of classes described below are not officially set and design will be updated as this evolves.

The following figure gives a high-level overview of the planned classes and their relationship to the Drupal API:

While the design is not complete at this point, here is a brief summary of the overall plan.

• The Drupal ContentBaseEntity will be extended to further support biological data and multiple data sources.

• We will override the ContentBaseEntity::preSave(), ::postSave() and ::postLoad() methods to move storage han-
dling out of the entity and into a per field implementation.

• These overridden methods will call the appropriate TripalFieldStorage plugin implementation(s) for the fields
attached to a given entity.

• Each field will indicate it’s preferred storage plugin and administrators will have the ability to change the storage
plugin used on their site.

• All TripalFieldStorage plugins will return data using a well documented data array. Controlled vocabularies will
play a critical role.

• Biological data will not be duplicated in the Drupal database.

• We will create Drupal Console commands to upgrade old Tripal3 Fields to the new architecture.

8.5. Design In Progress 153

Tripal 4.x Documentation, Release 4.x.alpha.1

Entity/Field Design Requirements

The following are the requirements we are taking into account for our design. Please let us know if you have require-
ments not listed in the document.

1. Multiple data backends per Content Type

Tripal needs to support multiple data backends on a single Tripal Entity Type; specifically, on a per field basis..
For example, a SNP entity type should be able to have data from Drupal (application-specific), Chado (biological
metadata-specific), VCF (genotypic data), genetic map files, GWAS-related files, etc. This ensures that biological
data can be stored in the format which most makes sense for that data whether that be a flat-file format or a database.
Furthermore, it reduces data duplication by allowing support for original file formats rather then requiring all data to
be imported into a single database.

Unfortunately this requirement is in direct conflict with the new Drupal 9+ paradigm of requiring a single data backend
per entity type. All existing extension modules are in keeping with this Drupal paradigm (including External Entities).
Since this assumption is interwoven in many of the Entity and Content Entity classes, we cannot simply extend the core
classes for our design.

2. Tripal Fields control their own data load + save

As mentioned above, each field should be able to determine it’s own data storage. This functionality was available in
Tripal 3 and supports easy overriding of data storage through the creation of new fields. For example, multiple groups
can create genotypic data fields for genetic marker pages which cater to their specific storage paradigm. Furthermore,
this allows fields to only load the data they want to display which is more efficient then the entity needed to load all
data to support all fields.

3. Entities + Fields should be vocabulary-focused

Tripal 3 ensured that all Tripal Entity Types and Tripal Fields needed to be associated with a controlled vocabulary
term (preferably from a published ontology). This supports better cross database communication through the use of
standard ontologies. Additionally, it provides important information for semantic web services by ensuring all data in
Tripal is highly typed and these types are well-described with definitions and relationships.

4. Low data duplication

Biological data can be quite large, especially when important metadata for each data point is included. As such, we
would like to duplicate as little data as possible in order to keep database size manageable.

5. Tripal Fields are easy to extend

The data types and display for each Tripal site can be extremely diverse depending on their audience. For example, the
data needed for a metabolic focused community is quite different from that of a breeding focused community. As such,
fields need to be very easy to extend to allow Tripal sites to support their individual communities data needs.

154 Chapter 8. Design Documentation

https://www.drupal.org/project/external_entities

Tripal 4.x Documentation, Release 4.x.alpha.1

6. Upgrade path from Tripal 3

It needs to be as easy as possible to upgrade Tripal 3 fields, widgets and formatters to Tripal 4. Based on the data
diversity we mentioned above, we have seen a huge number of Tripal fields developed for Tripal 3. In order to ease
upgrade to Tripal 4 we need to take into account the sheer volume of fields being upgraded and ease the process as
much as possible. For reference, here is the Tripal 3 Field documentation.

TripalEntity

The TripalEntity class is an instance of a ContentBaseEntity interface. It inherits the functionality of a Drupal Entity
but allows us to provide Tripal specific customizations. In particular the following functions will be overridden:

• preSave()

– Cache the biological field data provided by the user.

– Remove the biological data so Drupal doesn’t store it using it’s own EntityStorageInterface. If Drupal
stores anything it will be context information for the TripalFieldStorage plugin implementations.

– Note: Caching and then removing the biological data prevents Drupal from duplicating it.

• postSave()

– Pulls the biological field data from the cache.

– Determines the proper TripalFieldStorage implementation that is needed for each field

– Calls the proper TripalFieldStorage instance for each field to save the data.

– We are exploring performance improvements by passing multiple fields with the same storage at once.

• postLoad()

– Determines the proper TripalFieldStorage implementation that is needed for each field.

– Passes the identifying context information Drupal saved for each field to the correct TripalFieldStorage
plugin implementation based on the field definitions.

– TripalFieldStorage instances will load the data for each field and add it to the entity.

– We are exploring performance improvements by passing multiple fields with the same storage at once.

8.5. Design In Progress 155

https://tripal.readthedocs.io/en/latest/dev_guide/custom_field.html

Tripal 4.x Documentation, Release 4.x.alpha.1

TripalFieldStorage

Tripal will have a TripalFieldStorage abstract class which is a Drupal plugin interface. It will provide methods to
support the following functionality

• load: for loading data from the underlying data store

• save: for inserting or updating data in the data store

• delete: for removing data in the data store

We are ensuring this plugin is completely agnostic to the details mentioned regarding the TripalEntity class. This
ensures that this class will be unaffected if the design of entities changes. It also allows this plugin to be more intuitive
and easier to implement then alternate data storage in Tripal3.

Note: More functionality may be added to this class but for now, the design is focused on these methods.

Example Usage: Chado

The TripalFieldStorage class is data store agnostic. However, implementation of this class will be data store specific.
The ChadoFieldStorage class is one such possible implementation where it is responsible for interacting with Chado
in a PostgreSQL database. We currently expect that all interactions with Chado in such a class would occur using the
new BioDB API that is currently being proposed by Valentin.

Note: As a note, we currently have the Chado API (flat functions) and the ChadoRecord class for interacting with
Chado. While these will remain for backwards compatibility we anticipate they will be deprecated in favour of the
BioDB API as it is matured.

8.5.2 Tripal Biological Database layer and Chado

This document describes the biological database API and the new Chado API.

156 Chapter 8. Design Documentation

Tripal 4.x Documentation, Release 4.x.alpha.1

Introduction

At its very beginning, Tripal was created to enable the use of Chado schema under Drupal CMS. Since its version 3,
Tripal design changed in order to be ontology driven (like Chado) but database agnostic. However, Tripal version 3
was only able to support the Chado database schema. With version 4, a new biological database layer has been added:
the Biological Database layer. This layer provides a database API extending Drupal database API that enables the use
of other database schemas in Drupal. While it is currently limited to PostgreSQL database type, it has no number or
type of schema limit. It means that it supports querying more than one schema at a time, and it is not limited to Chado
or Drupal.

Since the Biological Database layer is an API, it does not work on it own but is rather a basis to build other extensions
that will work on proprietary schema definitions like Chado. Therefore, the Tripal Chado extension is provided within
Tripal package as an implementation of the Biological Database Layer for Chado.

To sum up:

• The Biological Database API provides an abstraction layer to support any biological database schema.

• It supports multiple schemas and cross-schema queries.

• Tripal Chado extension is an implementation of the Biological Database API to support Chado schema.

BioDB Design Summary

The Biological Database API provides an API for biological databases but also an API to manage concurrent data
manipulation tasks: a Task API. This API is composed by a Task interface (and base implementation) and an extension
of Drupal Lock API that supports shared locks. Finally, a set of exception classes has been added in order to finely
manage thos new API exceptions.

Biological Database API

The following figure gives a high-level overview of the classes provided by the Biological Database API and their
relationship to the Drupal API:

This next figure shows which types of methods are provided by which class.

8.5. Design In Progress 157

Tripal 4.x Documentation, Release 4.x.alpha.1

As shown above, BioConnection and BioSchema classes inherit from Drupal classes. You can find inherited methods
from Drupal official documentation:

• Connection class

• Schema class

Many other methods are available and described in the source code of BioConnection, BioSchema and BioDbTool.

Task API

The purpose of the task API is to provide a common class interface for all database-related tasks. Thus, all tasks can
be managed from a same user interface or command line tool the same way.

Obviously, sometimes, some database task may require more than a couple of seconds to perform their job. During
that time, no other task should be allowed to modify the database concurrently to avoid data corruption. That’s why a
Lock API has been added in order to lock a database schema during a task and avoid data corruption issues.

While using an exclusive lock on a schema for a task that modifies the data, to prevent other tasks accessing that data,
perfectly makes sense, tasks that just require the data to remain unchanged while they are completing their job could
share a same “read-only” lock. Therefore, the lock API provides 2 lock flavors:

• exclusive locks for modified schemas

• shared locks for schemas only used for reading

Those two flavors are provided by the PersistentDatabaseLockBackend class through the methods ::acquire() and ::ac-
quireShared().

The following figure gives an overview of the classes provided by the Task API:

The task life cycle is displayed in the figure below with the example of a database schema cloner task.

158 Chapter 8. Design Documentation

https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Database!Connection.php/class/Connection/9.3.x
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Database!Schema.php/class/Schema/9.3.x

Tripal 4.x Documentation, Release 4.x.alpha.1

On the left side (yellow), the life cycle of a cloner task execution is described as follow:

1. First, a cloner task object is instanciated using Drupal services.

2. Then, its parameters are set. $source_schema would be the name of the schema to clone which will be locked
with a shared lock (read only). $new_schema would be the name of the new schema that will receive a copy of
$source_schema. $new_schema will be locked for exclusive use and no other task would be able to use it until
the exclusive lock is released.

3. Finaly, the task is performed and an execution status is returned.

On the right side (green), the life cycle of a cloner task status tracking. In that part, a task is created and setup using the
exact same steps 1. and 2. of the executed task. However, the third step differs since we just want the status of another
task with the same parameters currenlty running. Two methods can be used:

• getProgress: to get the percent of task completion (returns a float number between 0 and 1).

• getStatus: to get a human readable text status of the current task.

Code Examples

The following code can be used in modules or tested directly using drush php.

1. Dynamic query example on feature table in default Chado schema.

$biodb = \Drupal::service('tripal_chado.database');
$query = $biodb->select('feature', 'x');
$query->condition('x.is_obsolete', 'f', '=');
$query->fields('x', ['name', 'residues']);
$query->range(0, 10);
$result = $query->execute();
foreach ($result as $record) {
echo $record->name . "\n";

}

See also Drupal dynamic queries.

2. Static query example on feature table in default Chado schema.

$biodb = \Drupal::service('tripal_chado.database');
$sql_query = 'SELECT name, residues FROM {1:feature} x WHERE x.is_obsolete = :obsolete␣
→˓LIMIT 0, 10;';
$results = $biodb->query($sql_query, [':obsolete' => 'f']);
foreach ($results as $record) {

(continues on next page)

8.5. Design In Progress 159

https://www.drupal.org/docs/8/api/database-api/dynamic-queries

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

echo $record->name . "\n";
}

See also Drupal static queries and result sets.

3. Cross schema queries.

$biodb = \Drupal::service('tripal_chado.database');
$biodb->setSchemaName('chado1');
$biodb->addExtraSchema('chado2');
$sql = "
SELECT * FROM
{1:feature} f1,
{2:feature} f2,
{node_field_data} fd

WHERE fd.title = f1.uniquename
AND f1.uniquename = f2.uniquename;";

$results = $biodb->query($sql);

4. Chado installation task example.

$parameters = [
'input_schemas' => [],
'output_schemas' => ['chado'],
'version' => '1.3',

];
$installer = \Drupal::service('tripal_chado.installer');
$installer->setParameters($parameters);
$success = $installer->performTask();
if (!$success) {
echo "Chado installation failed. See logs for details.\n";

}

5. Chado cloner task example.

$parameters = [
'input_schemas' => ['chado'],
'output_schemas' => ['chado2'],

];
$cloner = \Drupal::service('tripal_chado.cloner');
$cloner->setParameters($parameters);
$success = $cloner->performTask();
if (!$success) {
echo "Failed to clone schema. See logs for details.\n";

}

6. Chado upgrader task example with status tracking.

Execution thread:

$parameters = ['output_schemas' => ['chado'],];
$upgrader = \Drupal::service('tripal_chado.upgrader');
$upgrader->setParameters($parameters);
$success = $upgrader->performTask();

(continues on next page)

160 Chapter 8. Design Documentation

https://www.drupal.org/docs/drupal-apis/database-api/static-queries
https://www.drupal.org/docs/8/api/database-api/result-sets

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

if (!$success) {
echo "Failed to upgrade schema. See logs for details.\n";

}

Status tracking thread (using the same parameters):

$parameters = ['output_schemas' => ['chado'],];
$upgrader = \Drupal::service('tripal_chado.upgrader');
$upgrader->setParameters($parameters);
$progress = $upgrader->getProgress();
$status = $upgrader->getStatus();
echo "Currently at " . (100*$progress) . "%\n" . $status;

7. Some random code.

// Get the BioDatabase tool.
$biotool = \Drupal::service('tripal_biodb.tool');

// Get Drupal schema name.
$biotool->getDrupalSchemaName();

// Test if a user-provided schema name is valid and not reserved.
if ($issue = $biotool->isInvalidSchemaName($schema_name)) {
throw new Exception();

}
// If we want to check a reserved schema name.
$biotool->isInvalidSchemaName($schema_name, TRUE);

// Temporary reserve a new schema pattern to avoid its use by other modules.
$biotool->reserveSchemaPattern('mytests_*', 'Reserved for my tests.');

// Permanently reserve a pattern.
$config = \Drupal::service('config.factory')
->getEditable('tripal_biodb.settings')

;
// Warning: to not free other reservations, don't forget to get current
// config first and modify that array! Don't create a new one.
$reserved_schema_patterns = $config->get('reserved_schema_patterns') ?? [];
$reserved_schema_patterns['mytests_*'] = 'Reserved for my tests.';
$config->set('reserved_schema_patterns', $reserved_schema_patterns)->save();

// Get a new Chado connection using default Chado schema.
$biodb = \Drupal::service('tripal_chado.database');

// Create a new schema 'new_chado': 2 possible methods.
// - Method 1, using BioDatabase Tool:
$biotool->createSchema('new_chado');
// - Method 2, unsing a Chado connection: first we need to set the schema name
// and then create it.
$biodb->setSchemaName('new_chado');
$biodb->schema->createSchema();

(continues on next page)

8.5. Design In Progress 161

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

// Copy some feature values from 'chado1' to 'chado2':
$biodb->setSchemaName('chado1');
$biodb->addExtraSchema('chado2');
$sql = "
INSERT INTO {2:feature} f2
(organism_id, name, uniquename, residues, seqlen, md5checksum, type_id)

SELECT o2.organism_id, f1.name, f1.uniquename, f1.residues, f1.seqlen, f1.md5checksum,␣
→˓c2.cvterm_id
FROM {1:feature} f1
JOIN {1:organism} o1 ON o1.organism_id = f1.organism_id
JOIN {1:cvterm} c1 ON c1.cvterm_id = f1.type_id,
{2:organism} o2,
{2:cvterm} c2

WHERE o2.species = o1.species
AND c2.name = c1.name
AND f1.uniquename LIKE 'NEW_%'

;";
$results = $biodb->query($sql);

// By default, ->select, ->insert, ->update, ->delete and other similar
// dynamic query methods of BioConnection will use Drupal schema. In fact, it
// is because those methods generate SQL queries using the table notation with
// simple curly braces (ie. "{some_table_name}") which will use Drupal table
// for backward compatibility with Drupal. It is possible to change that
// default to the selected biological schema. In order to use a Chado schema
// as default for those methods in other modules, the class or an instance
// must register itself as willing to use the biological schema by default:
$some_object = new SomeClass();
// Register any instance of the class:
$biodb->useBioSchemaFor(SomeClass::class);
// Another way would be to just register a specific class instance:
$biodb->useBioSchemaFor($some_object);
// Now calls to BioConnection dynamic query methods will work on the
// biological schema by default (until thread ends or call to
// ::useDrupalSchemaFor method).
// Note: if static queries in any of the registered classes need to use Drupal
// tables, instead of using the simple curly braces notation, the Drupal
// schema index must be specified explicitly. So "{some_table_name}" must be
// turned into "{0:some_table_name}".

// Execute a set of SQL commands on a given biological schema from an SQL file
// that may containt "SET search_path = ...":
// - Case 1: automatically remove any "SET search_path":
$biodb->executeSqlFile($sql_file_path, 'none');
// - Case 2: replace some schema names by others in every "SET search_path":
// Here we replace every 'chado' by 'my_chado'.
$biodb->executeSqlFile($sql_file_path, ['chado' => 'my_chado']);

// Get the list of table in a biological schema.
$tables = $biodb->schema()->getTables(['table', 'view']);
$stock_table = $tables['stock'];

(continues on next page)

162 Chapter 8. Design Documentation

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

// Get table definition with a simple array structure.
$biodb->schema()->getTableDef('stock', []);
// Get table definition from file version 1.3 in Drupal database API format.
$biodb->schema()->getTableDef('stock', ['source' => 'file', 'format' => 'drupal',
→˓'version' => '1.3']);
// Get table definition from database as SQL DDL.
$biodb->schema()->getTableDef('stock', ['source' => 'database', 'format' => 'sql']);

// Clone 'chado' schema into 'chado2'.
// Method 1: using Biological Database API.
$biodb->setSchemaName('chado2');
$biodb->schema()->cloneSchema('chado');
// Method 2: using cloner service.
$parameters = [
'input_schemas' => ['chado'],
'output_schemas' => ['chado2'],

];
$cloner = \Drupal::service('tripal_chado.cloner');
$cloner->setParameters($parameters);
$success = $cloner->performTask();
if (!$success) {
echo "Failed to clone schema. See logs for details.\n";

}

// Get Chado test schema base name.
$test_schema_base_names = $config->get('test_schema_base_names') ?? [];
$chado_test_base_name = $test_schema_base_names['chado'];

// Write tests for Chado operations.
use Drupal\Tests\tripal_chado\Functional\ChadoTestKernelBase;
class MyFunctionalTest extends ChadoTestKernelBase {
// Get a temporary schema name.
$biodb = $this->getTestSchema(ChadoTestKernelBase::SCHEMA_NAME_ONLY);

// Create a temporary schema with dummy data.
$biodb2 = $this->getTestSchema(ChadoTestKernelBase::INIT_DUMMY);

// Create a temporary empty Chado schema with no data.
$biodb3 = $this->getTestSchema(ChadoTestKernelBase::INIT_CHADO_EMPTY);

// Create a temporary empty Chado schema with some dummy data.
$biodb4 = $this->getTestSchema(ChadoTestKernelBase::INIT_CHADO_DUMMY);

// ... test stuff ...

// Once done, don't forget to free all used schemas.
// If you forget, there is a garbage collecting system that will remove
// unused schemas but warnings will be raised.
$this->freeTestSchema($biodb);
$this->freeTestSchema($biodb2);
$this->freeTestSchema($biodb3);

(continues on next page)

8.5. Design In Progress 163

Tripal 4.x Documentation, Release 4.x.alpha.1

(continued from previous page)

$this->freeTestSchema($biodb4);
}

164 Chapter 8. Design Documentation

	Install Tripal
	Requirements
	Supported Drupal Versions

	Traditional Installation
	Install Prerequisites
	Install Drupal
	Install Tripal
	Install and Prepare Chado

	Tripal Docker
	Software Stack
	Quickstart
	Development Site Information:

	Usage
	Detailed Setup for Core Development
	Troubleshooting
	The provided host name is not valid for this server.
	Not seeing recent functionality or fixes.

	Debugging
	Xdebug: Overview
	Xdebug: Step debugging
	Xdebug: Profiling

	Building your Site
	Anatomy of a Tripal Site
	Content Types
	Examples

	Fields

	Creating Content Types
	Find a Controlled Vocabulary (CV) Term
	How to Add a CV Term
	Loading From an OBO File
	Manually Adding a Term

	Example Genomic Site Setup
	Setup Tripal Content Types
	Create an Organism Page
	Load data from NCBI Taxonomy
	Adding New Fields
	Further Customizations

	Create a Genome Assembly Page
	Setup Cross References to external sites
	Import the Gene Ontology
	Import a Genome Assembly + Annotation
	Loading a GFF3 File
	Loading FASTA files
	Creating Gene Pages
	Customizing Transcripts on Gene Pages

	Guiding your Users
	Site Administration
	File Management
	User Quotas
	Users’ Files

	Publishing
	Tripal Jobs
	Manual Job Execution
	Overview
	Commands and Arguments

	Automating Job Execution

	User Permissions
	Creating Roles to enable Curation
	Steps
	Create User
	Create Roles and Assign them to Users
	Edit User’s Role
	Permissions for Role to define collaborative groups
	File permissions
	Node permissions
	Tripal permissions
	Permissions by Term

	Database Backups
	The Importance of Backups
	How to make a backup
	How to restore from a backup
	Best Practices

	Extending Tripal
	Object-Oriented Development
	Controlled Vocabularies (CVs)
	How are CVs used in Tripal?
	Identifying a CVTerm
	Retrieving Tripal Terms
	Chado CV module

	Biological Data Storage
	Tripal DBX: Generic cross database support for Drupal
	Tripal DBX Connection
	Tripal DBX Schema

	GMOD Chado Schema Integration
	Chado Installation
	Tripal Vocabularies & Terms

	Bulk Schema Install for PostgreSQL
	Custom Tables in Chado
	Creating a Chado Data Importer
	Step 1: Create Your Module
	Step 2: Create the Importer Class File
	Step 3: Stub the Class File
	Step 4: Add Class Annotations
	Step 5: Check Availability
	Step 6: Customize the Form
	The form() function
	The formValidate() function
	The formSubmit() function

	Step 7: Write Importing Code
	The preRun() function
	The run() function
	Logging
	Throwing errors
	Reporting Progress

	Step 8: Write Functional Tests
	Create the Testing Class
	The setUp() function
	The testImporterForm() function

	Custom Module Development
	Module File Structure
	Choosing a module name
	Prepare a module skeleton
	Directory Structure

	Menus, Links and URLs
	Menu Items
	Links

	Pages and Page Types
	Fields (content building blocks)
	Field Classes
	How to Write a New Field for Chado
	Directory Setup
	Naming convention
	About the Storage Backend
	Default Drupal Behavior
	Support for Chado

	Implementing a ChadoFieldItemBase Class
	Single-Value Fields
	Complex Fields
	Class Setup
	Namespace and Use Statements
	Annotation Section
	Class Definition
	The defaultFieldSettings() Function
	The defaultStorageSettings() Function
	The storageSettingsForm() Function
	The fieldSettingsForm() Function
	The getConstraints() Function
	The tripalTypes() Function
	Property Types
	Property Settings

	Implementing a TripalWidgetBase Class
	Implementing a TripalFormatterBase Class

	Automate Adding a Field to a Content Type
	What About Fields not for Chado?

	Forms (user input)
	Error Reporting and Logging
	Tripal Logger

	Views (content listings)
	Configuration Variables
	Theme (display)
	Caching (performance)
	Alternate Database Backends
	Tripal Vocabularies, IDSpaces and Terms
	Step 1: Create your plugin implementation class
	Step 2: Implement the methods you need for integration.

	Automated Testing
	How run automated tests locally
	Tripal-focused Testing
	Tripal Testing Environment
	Setting up Content Types
	Adding Fields to Content Types

	Chado Testing Environment
	Retrieving the cvterm ID of a term in your test chado

	Fields
	Testing Chado Field storage
	Creating your testing Class
	Defining the field instances to be tested
	Methods provided by ChadoStorageTestTrait

	Additional Resources

	Hands-On Training
	How to use Custom Tables in Chado
	Creating a Custom Table
	Locking a Custom Table
	The Table ID
	Finding Custom Tables
	Load by ID
	Load by Name
	Getting a List of Custom Tables

	Deleting a Custom Table
	Changing a Custom Table
	Using the Custom Table

	Upgrading Tripal
	Upgrading a Tripal 3 site
	Upgrading an Extension Module
	tripal_set_message() and tripal_report_error()
	drupal_set_message()
	format_date()
	Loading a User Object
	Creating Links
	Database Queries
	db_query
	drupal_write_record

	Views
	The hook_views_data() function
	The hook_views_default_views() function
	Embed a View on a Page

	Attaching CSS

	Contributing to Core Tripal
	Guidelines for Contribution to Tripal
	Github Communication Tips
	Pull Request (PR) Guideline
	How to create a PR

	Code of Conduct
	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Attribution

	Shared Repository Management
	Branch Naming Conventions
	Outdated Branches
	Unable to Finish
	Other Reasons for Abandoning a Branch
	How to Save Progress from a Branch
	How to Recover an Previously Deleted Branch

	Creating a Docker for Testing
	Testing on the most current development version
	Testing on an unmerged branch

	Design Documentation
	Design Overview
	Authors
	Design Document Authors
	Tripal v4 Developers

	Module + File Structure
	Controlled Vocabulary Design
	Design Requirements
	1. Support multiple data backends
	2. Performance
	3. Support borrowing terms from existing vocabularies
	4. Model vocabularies intuitively

	File Structure

	Design and Coding Standards
	Contributing to Design
	Verbal Communication
	Design Documentation Standards
	Organization
	How to Contribute Design Documents
	Adding New Designs
	Submitting Designs

	Formatting Design Documentation
	Structure of the Document
	Headers

	Design In Progress
	Entities and Fields Design
	Entity/Field Design Summary
	Entity/Field Design Requirements
	1. Multiple data backends per Content Type
	2. Tripal Fields control their own data load + save
	3. Entities + Fields should be vocabulary-focused
	4. Low data duplication
	5. Tripal Fields are easy to extend
	6. Upgrade path from Tripal 3

	TripalEntity
	TripalFieldStorage
	Example Usage: Chado

	Tripal Biological Database layer and Chado
	Introduction
	BioDB Design Summary
	Biological Database API
	Task API

	Code Examples

